Прикладная статистика
Статистические методы анализа данных, относящиеся к группе а), обычно называют методами прикладной статистики. Таким образом, прикладная статистика – это наука о том, как обрабатывать данные произвольной природы, без учета их специфики.
Математическая основа прикладной статистики и статистических методов анализа данных в целом – это математическая наука, известная под названием «теория вероятностей и математическая статистика». Следует подчеркнуть, что прикладная статистика - другая область знаний, чем математическая статистика. Это очень четко проявляется в процессе обучения. Курс математической статистики состоит в основном из доказательств теорем, в то время как в курсах статистических методов основное - методология анализа данных и алгоритмы расчетов, а теоремы приводятся для обоснования этих алгоритмов, доказательства же, как правило, опускаются (их можно найти в научной литературе).
Термин «статистика» можно рассматривать как «наука о сборе, представлении и анализе данных». В свою очередь, использование статистики в приложении к живому миру называют «биометрией» или «биостатистикой».
Описание вида данных и, при необходимости, механизма их порождения – начало любого статистического исследования. Отметим, что для описания данных применяют как детерминированные (детерминация от лат. определение, ограничение), так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Детерминированные и вероятностно-статистические методы можно рассматривать как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей.
Можно выделить два класса статистических данных – числовые и нечисловые. Соответственно прикладная статистика разбивается на две части – числовую статистику и нечисловую статистику.
Дата добавления: 2015-10-05; просмотров: 703;