Для позиционной системы счисления справедливо равенство
(1)
где A(q) – произвольное число, записанное в системе счисления с основанием q; ai – коэффициенты ряда (цифры системы счисления); n, m – количество целых и дробных разрядов.
На практике используют сокращенную запись чисел:
(2)
Например:
а) в двоичной системе (q=2)
11010.1012 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 + 1 · 2-1 + 0 · 2-2 + 1 · 2-3;
б) в троичной системе (q=3)
22120.2123 = 2 · 34 + 2 · 33 + 1 · 32 + 2 · 31 + 0 · 30 + 2 · 3-1 + 1 · 3-2 + 2 · 3-3;
в) в шестнадцатиричной системе (q=16)
A3F.1CD16 = A · 162 + 3 · 161 + F · 160 + 1 · 16-1 + C · 16-2 + D · 16-3.
Контрольные вопросы:
1. Что обеспечивает система счисления?
2. Какая система счисления называется позиционной?
3. Какая система счисления называется непозиционной?
4. Какое равенство отожествляется с позиционной системой счисления?
5. Приведите примеры позиционных и непозиционных систем счисления.
Дата добавления: 2015-09-18; просмотров: 1529;