Для позиционной системы счисления справедливо равенство

(1)

 

где A(q) – произвольное число, записанное в системе счисления с основанием q; ai – коэффициенты ряда (цифры системы счисления); n, m – количество целых и дробных разрядов.

На практике используют сокращенную запись чисел:

(2)

 

Например:

а) в двоичной системе (q=2)

11010.1012 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20 + 1 · 2-1 + 0 · 2-2 + 1 · 2-3;

б) в троичной системе (q=3)

22120.2123 = 2 · 34 + 2 · 33 + 1 · 32 + 2 · 31 + 0 · 30 + 2 · 3-1 + 1 · 3-2 + 2 · 3-3;

в) в шестнадцатиричной системе (q=16)

A3F.1CD16 = A · 162 + 3 · 161 + F · 160 + 1 · 16-1 + C · 16-2 + D · 16-3.

Контрольные вопросы:

1. Что обеспечивает система счисления?

2. Какая система счисления называется позиционной?

3. Какая система счисления называется непозиционной?

4. Какое равенство отожествляется с позиционной системой счисления?

5. Приведите примеры позиционных и непозиционных систем счисления.

 

 








Дата добавления: 2015-09-18; просмотров: 1529;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.