Плоскопанельные мониторы.
Мониторы на основе ЭЛТ имеют ряд существенных недостатков, ограничивающих использование мониторов.
Такими недостатками являются:
• большие масса и габаритные размеры;
• значительное энергопотребление, наличие тепловыделения;
• излучения, вредные для здоровья человека;
• значительная нелинейность растра, сложность ее коррекции.
Первые два недостатка не позволяют использовать мониторы на основе ЭЛТ в переносных компьютерах типа Notebook, остальные осложняют работу оператора и наносят вред его здоровью.
Однако главными недостатками обычных мониторов все же являются большие габариты, масса и энергопотребление. Для устранения этих недостатков были разработаны малогабаритные дисплеи на основе жидких кристаллов - ЖК-мониторы. Главное отличие ЖК-монитора от обычного состоит в том, что он совершенно плоский. По этой причине мониторы подобного типа стали называть плоскопанельными.
В настоящее время плоско панельные мониторы используются как в составе переносных компьютеров типа Notebook, так и в качестве самостоятельного устройства отображения, которое можно подключить к любому PC.
Основными представителями плоскопанельных мониторов являются ЖК-мониторы. Они составляют основную долю рынка плоскопанельных мониторов с экраном размером 13 — 17". Рассмотрим их устройство и принцип действия.
Основным элементом ЖК-монитора является ЖК-экран, состоящий из двух панелей, выполненных из стекла, между которыми размещен слой жидкокристаллического вещества. Эти стеклянные панели обычно называют подложками. Как и в обычном мониторе, экран ЖК-монитора представляет собой совокупность отдельных элементов — ЖК-ячеек, каждая из которых генерирует 1 пиксел изображения. Однако, в отличие от зерна люминофора ЭЛТ, 1 ЖК-ячейка сама не генерирует свет, а лишь управляет интенсивностью проходящего света, поэтому ЖК-мониторы всегда используют подсветку.
Принцип действия ЖК-монитора: ЖК-ячейка представляет собой электронно-управляемый светофильтр, принцип действия которого основан на эффекте поляризации световой волны. Жидкокристаллическое вещество, размещенное между подложками, имеет молекулы вытянутой формы, называемые нематическими. Благодаря этому молекулы ЖК-вещества имеют упорядоченную ориентацию, что приводит к появлению оптической анизотропии, при которой показатель преломления ЖК-вещества зависит от направления распространения световой волны.
Другим важным свойством ЖК-вещестиа является зависимость ориентации молекул от направления внешнего электрического поля. Используя два этих свойства, можно создать электронно-управляемый светофильтр.
Технология Twisted Nematic.
В ЖК-мониторах чаще всего используются ЖК-ячейки с твистированной (закрученной на 90°) ориентацией молекул (рис. 3.8, а). Для создания такой ячейки применяются подложки, у которых ориентирующие канавки также развернуты друг относительно друга на угол 90°. Такая ячейка называется твистированной нематической (Twisted Nematic). Проходя через эту ячейку, плоскость поляризации световой волны также поворачивается на 90°. Помимо ориентирующего действия, подложки ЖК-ячейки играют роль поляризационных фильтров, поскольку пропускают световую волну только с линейной поляризацией. Верхняя подложка называется поляризатором, а нижняя — анализатором. Векторы поляризации подложек так же, как и векторы их ориентирующего действия, развернуты на 90° друг относительно друга.
При отсутствии внешнего электрического поля падающий на ячейку свет проходит через поляризатор и приобретает определенную поляризацию, совпадающую с ориентацией молекул жидкокристаллического вещества у поверхности поляризатора. По мере распространения света по направлению к нижней подложке (анализатору) его плоскость поляризации поворачивается на 90°. Достигнув анализатора, свет свободно проходит через него, поскольку плоскость его поляризации совпадает с плоскостью поляризации анализатора. В результате ЖК-ячейка оказывается прозрачной.
Ситуация изменится, если к подложкам приложить напряжение 3—10 В. В этом случае между подложками возникнет электрическое поле и молекулы жидкокристаллического вещества расположатся параллельно силовым линиям поля (рис. 3.8, б). Твистированная структура жидкокристаллического вещества исчезает, и поворота плоскости поляризации проходящего через него света не происходит. В результате плоскость поляризации света не совпадает с плоскостью поляризации анализатора, и ЖК-ячейка оказывается непрозрачной.
Подсветка ЖК-экрана. В качестве ламп подсветки ЖК-экранов используют специальные электролюминесцентные лампы с холодным катодом, характеризующиеся низким энергопотреблением. Это, наряду с низким управляющим напряжением ЖК-ячейки, объясняет низкое энергопотребление ЖК-экранов В зависимости от места расположения подсветки различают экраны с подсветкой сзади (backlight, или backlit) и с подсветкой по бокам (sidelihgt, или sidelit).
Если пиксел изображения образован единственной ЖК-ячейкой, изображение на экране будет монохромным. Для получения цветного изображения ЖК-ячейки объединяют в триады, снабдив каждую из них светофильтром, пропускающим один из трех основных цветов.
Недостатки технологии Twisted Nematic. Благодаря применению технологии Twisted Nematic была решена проблема габаритов и энергопотребления, однако эта технология имеет ряд серьезных недостатков:
• низкое быстродействие ячеек — на изменение ориентации молекул жидкокристаллического вещества требовалось до 500 мс, что не позволяло использовать такие ЖК-экраны для отображения динамических изображений (например, на экране монитора пропадало изображение указателя мыши при ее быстром перемещении);
• зависимость качества изображения (яркости, контрастности) от внешних засветок;
• взаимное влияние ячеек, вызванное влиянием управляющего сигнала одной ячейки на соседние;
• ограниченный угол зрения, под которым изображение на ЖК-экране хорошо видно;
• низкая яркость и насыщенность изображения;
• ограниченные размеры ЖК-экрана;
• высокая стоимость.
Технология Super-Twisted Nematic. Для устранения перечисленных выше недостатков технология Twisted Nematic была усовершенствована. С целью улучшения контрастности изображения угол закручивания молекул ЖК-вещества был увеличен сначала до 120°, а затем - до 270°. Такие ячейки получили название STN (Super-Twisted Nematic — сверхзакрученные нематические ячейки).
Технология Dual Super-Twisted Nematic. Дальнейшим шагом в этом направлении стало использование не одной, а двух ячеек одновременно, последовательно поворачивающих плоскость поляризации в противоположных направлениях. Эта технология получила название DSTN (Dual Super-Twisted Nematic - двойные сверхзакрученные нематические ячейки).
Двойное сканирование ЖК-экрана.
Проблема низкого быстродействия ЖК-ячеек была частично решена путем использования так называемого двойного сканирования, когда весь ЖК-экраи разбивается на четные и нечетные строки, обновление которых выполняется одновременно. Двойное сканирование совместно с использованием более подвижных молекул позволило снизить время реакции ЖК-ячейки до 150 мс и значительно повысить частоту обновления экрана.
Технология TFT. Радикально повысить контрастность и быстродействие ЖК-экранов позволила так называемая технология активных ЖК-ячеек. В отличие от обычной (пассивной) активная ЖК-ячейка имеет собственный электронный ключ, выполненный на транзисторе. Такой ключ позволяет коммутировать более высокое (десятки вольт) напряжение, используя сигнал низкого уровня (около 0,7 В).
Благодаря применению активных ЖК-ячеек стало возможным значительно снизить уровень сигнала управления и тем самым решить проблему частичной засветки соседних пикселов. Поскольку электронные ключи выполняются по тонкопленочной технологии, подобные ЖК-экраны получили название TFT-экраны (Thin Film Transistor — тонкопленочный транзистор).
Технология TFT была разработана специалистами фирмы Toshiba. Она позволила не только значительно улучшить показатели ЖК-мониторов (например, яркость, контрастность, угол зрения), но и создать на основе активной ЖК-матрицы цветной монитор. Каждый элемент такой ЖК-матрицы образован тремя тонкопленочными транзисторами и триадой управляемых ими ЖК-ячеек.
Контроллер ЖК-экрана нужен для решения задачи формирования и подачи управляющего сигнала видеоадаптера на каждую ЖК-ячейку экрана. Контроллер является наиболее сложным элементом ЖК-монитора. Он выполняет синхронизацию по частоте и фазе выходных сигналов видеоадаптера и управляющих ЖК-экраном синхросигналов, формируемых с помощью схем управления строками и столбцами. Рассогласование этих сигналов по частоте ведет к таким дефектам изображения, как дрожание растра, образование вертикальных линий на изображении либо его полное пропадание. После выравнивания частот указанных сигналов контроллер ЖК-экрана производит их синхронизацию по фазе, что позволяет добиться необходимой фокусировки изображения и полностью устранить его дрожание.
Помимо адресации ячеек и синхронизации изображения, контроллер ЖК-экрана выполняет дополнительное аналого-цифровое преобразование видеосигнала. Необходимость преобразования обусловлена тем, что ЖК-экран (как совокупность огромного количества ячеек) представляет собой устройство с цифровым управлением, т. е. на схему адресации ячеек необходимо подавать цифровой код. В результате значительно уменьшается количество оттенков цвета, отображаемых ЖК-монитором.
Технология Digital Flat Panel Initiative. С целью устранения промежуточных преобразований была разработана новая технология DFPf (Digital Flat Panel Initiative — цифровая инициализация плоской панели), в соответствии с которой содержимое ячеек видеопамяти передается непосредственно в ячейки ЖК-экрана. Реализация этой технологии позволяет повысить скорость обновления экрана и разрешить проблему синхронизации работы контроллеров экрана и видеоадаптера. Многие современные видеоадаптеры позволяют обнаружить-факт подключения к ним ЖК-монитора и соответствующим образом изменить свой выходной сигнал.
Дата добавления: 2015-09-14; просмотров: 1790;