АТМОСФЕРНИЙ ТИСК.
Усякий газ здійснює тиск на поверхні, що його обмежують, перпендикулярно (нормально) до цих поверхонь. Числове значення (модуль) цієї сили тиску, віднесеної до одиниці площі, і називають тиском. Тиск газу обумовлено рухами його молекул, тим "бомбардуванням", що вони піддають стінки посуду, в якому знаходиться газова суміш. При зростанні температури і зберіганні об'єму газу швидкості молекулярних рухів збільшуються і, отже, тиск зростає. Повітря в закритому (негерметично) помешканні досить вільно вирівнює свій тиск із зовнішнім повітрям через пори і щілини в стінах, через вікна і т.д. Тому на метеорологічних станціях немає потреби поміщати барометри під відкритим небом - їх встановлюють усередині помешкання.
Основним приладом для виміру атмосферного тиску є ртутний барометр. У цьому приладі, відомому з курсу фізики, атмосферний тиск врівноважується тиском стовпа ртуті; по змінах висоти ртутного стовпа можна судити про зміни атмосферного тиску. Інший принцип виміру атмосферного тиску, широко застосовуваний в анероїдах, барографах, метеорографах, радіозондах, заснований на деформаціях пружної, порожньої усередині металевої коробки при змінах зовнішнього тиску на неї. Прилади цього типу потрібно тарувати (градуювати) за показниками ртутного барометра. Сьогодні тиск, як уже сказано вище, виражають у гектопаскалях (гПа). Середній атмосферний тиск на рівні моря близько до 1013 гПа.
2.14. ТЕМПЕРАТУРА ПОВІТРЯ
Температура повітря є однією з головних метеорологічних величин. Всі явища та процеси, що відбуваються в органічному та неорганічному світі, безпосередньо пов'язані з термічними умовами навколишнього середовища. Крім того, температура повітря визначає характер і режим погоди. Всі ми інтуїтивно відчуваємо, що таке температура. Рукою можна грубо відрізнити холодне від гарячого, однак ми знаємо, що при цьому неважко припуститись і помилки.
Всім відомий дослід, коли одну руку опускають в холодну, а іншу - в гарячу воду. Якщо через деякий час опустити одночасно обидві руки в посудину з теплою водою, то рука, що була до цього у гарячій воді, відчує холод, а рука, що була до цього у холодній воді - відчує жар. Цей дослід показує, що наші надійні відчуття можуть бути помилковими. Тому бажано мати такий спосіб вимірювання температури, який не залежав би від наших відчуттів і від нашого настрою. Якщо хворі відчувають жар, то це характеризує їх самопочуття. Коли лікарі зрозуміли це, вони спробували при обстеженні пацієнтів якось вимірювати їх температуру. При цьому використовувались скляні трубки, заповнені до якогось рівня водою, ртуттю, вином або ж підфарбованою рідиною. При цьому лікарі вважали, що чим вище піднімається рідина у трубці, тим вище температура. Оскільки на термометрах не було однакових шкал, лікар порівнював температуру хворого із своєю власною, яка мала постійну позначку у нижній частині шкали. Історики науки розповідають, що Галілео Галілей (1564-1642 рр.) виготовлені ним термометри теж наповнював вином. Один з таких приладів він якось надіслав своєму другу - вченому в Англію. Додав і записку, в якій повідомляв про призначення термометра. Але чи то в дорозі записка загубилася, чи то адресат не зрозумів її змісту … Бо через деякий час Галілей одержав таку відповідь: "Вино було справді чудове. Будь ласка, надішліть мені ще один такий прилад". Німецький фізик Даніель Габріель Фаренгейт (D. G. Fahrenheit, 1686 - 1736), який працював у Великій Британії та Нідерландах, у якості двох фіксованих точок вибрав рівні, один з яких відповідав температурі тіла його дружини (якби ми використовували зараз його термометр, він показав би 100° F), а другий, 0° F, відповідав найнижчому рівню, до якого опускався ртутний стовпчик в одну із зим у Північній Ірландії. Можливо, що Фаренгейт хотів уникнути від’ємних температур, вважаючи, що Північна Ірландія у середині зими є найбільш холодним місцем на земній кулі. Свій перший спиртовий термометр він виготовив у 1709 році, а ртутний - у 1714 році. Відстань між цими двома точками він розділив на 100 рівних частин, кожну з яких він назвав градусом (сучасна назва - 1° F). Так у 1714 р. з'явилась шкала, названа його ім'ям.
За допомогою такого термометра, що показував 212° F і 32° F при кипінні та замерзанні води, йому вдалося встановити, що різні рідини киплять при різних, але “фіксованих ступенях (лат. - градус) теплоти”. Андерс Цельсій (A. Celsius 1701 - 1744) запропонував використовувати два стани речовини для визначення двох точок на шкалі термометра. В якості нульової відмітки він узяв рівень ртуті, що відповідає температурі такого льоду, що тане. Через позначку 100 він помітив рівень, що відповідає температурі води, яка кипить. Поділивши цей інтервал на 100 рівних частин, Цельсій отримав стоградусну шкалу, яка й досі називається його ім’ям.
Щоб перейти від шкали Цельсія до шкали Фаренгейта і навпаки, слід врахувати, що ділення на шкалі Фаренгейта йдуть частіше, ніж по шкалі Цельсія (5/9 ° С = 1° F) і що 0° С відповідає 32° F. Тоді 5/9 (t° F - 32)=t° С.
Шкала Цельсія не менш довільна, ніж шкала Фаренгейта, однак у науковій роботі нею користуються частіше. Повітря, як і будь-яке тіло, завжди має температуру, відмінну від абсолютного нуля. Температура повітря в кожній точці атмосфери безупинно змінюється; у різних місцях Землі в той самий час вона також різна. Біля земної поверхні температура повітря варіює в досить широких межах: крайні її значення, що спостерігалися дотепер, трохи нижче значення 60 °С (у тропічних пустелях, наприклад, 58 °С в Аль-Азізі, поблизу Тріполі (Лівія) 15.09. 1922 р.) і біля -90°С (на материку Антарктиди, -88,3 °С на ст. "Восток" 24.08.1960 р.).
З висотою температура повітря змінюється в різних шарах і в різних випадках по-різному. У середньому вона спочатку знижується до висоти 10-15 км, потім зростає до 50-60 км, потім знову падає і т.д.
Температура повітря, а також землі і води в системі СІ виражається в градусах міжнародної температурної шкали, або шкали Цельсія (°С), загальноприйнятої у фізичних вимірах. Нуль цієї шкали припадає на температуру, при якій тане лід, а 100 °С - на температуру кипіння води (те й інше при тиску 1013 гПа).
Поряд із шкалою Цельсія широко поширена (особливо в теоретичній фізиці) абсолютна шкала температури (шкала Кельвіна). Нуль цієї шкали відповідає повному припиненню теплового руху молекул, тобто найнижчій можливій температурі. По шкалі Цельсія це буде -273,15 °С (на практиці за абсолютний нуль нерідко приймається -273 °С). Одиниця абсолютної шкали, називана Кельвіном (К), дорівнює одиниці шкали Цельсія: 1 К = 1°С. По абсолютній шкалі температура може бути тільки додатною, тобто вище абсолютного нуля.
У формулах температура по абсолютній шкалі позначається через Т, а температура по Цельсію - через t. Для переходу від температури по Цельсію до температури по абсолютній шкалі існує відома формула:
Т = t + 273,15
Ряд співвідношень дозволяють визначити також перехід від температури, визначеної у градусах по шкалі Цельсія або Кельвіна, до температури, визначеної у градусах по шкалі Фаренгейта, Реомюра, Ренкіна, які застосовувалися чи застосовуються в ряді країн світу.
2.15. ЩІЛЬНІСТЬ (ГУСТИНА) АТМОСФЕРНОГО ПОВІТРЯ
Щільність (густина) повітря безпосередньо не вимірюється, а обчислюється за допомогою рівняння стану газів. Вологе повітря дещо менш щільне, ніж сухе повітря при тих же значеннях тиску і температури. Це пояснюється тим, що водяна пара менш щільна, ніж сухе повітря. Якщо взяти якийсь об'єм сухого повітря і замінити частину молекул постійних газів більш легкими молекулами водяної пари в тій же кількості і з тими ж швидкостями руху так, що температура і тиск від цього не зміняться, то щільність отриманого вологого повітря буде дещо менше, ніж щільність сухого повітря. Різниця не дуже велика. Щільність сухого повітря при температурі 0 °С і тиску 1000 гПа дорівнює 1,276 кг/м3.
Якщо ж повітря вологе, притому насичене, тобто тиск водяної пари 6,1 гПа (більше воно при температурі О °С бути не може), то щільність його при тиску 1000 гПа буде 1,273 кг/м3, тобто тільки на 0,003 кг/м3 менше, ніж щільність сухого повітря. При більш високих температурах і, отже, при більшому вологоутриманні різниця збільшується, хоча і залишається невелика.
Щільність повітря в кожному місці безупинно змінюється в часі. Крім того, вона змінюється з висотою, тому що з висотою змінюються також атмосферний тиск і температура повітря. Тиск із висотою завжди зменшується, а разом із ним убуває і щільність. Температура з висотою в основному знижується, принаймні в нижніх 10-15 км атмосфери. Але спад температури тягне за собою підвищення щільності. У результаті спільного впливу зміни тиску і температури щільність із висотою, як правило, знижується, але не так сильно, як тиск. У середньому для Європи вона дорівнює біля земної поверхні 1,25 кг/м3, на висоті 5 км - 0,74 кг/м3, 10 км - 0,41 кг/м3, 20 км - 0,09 кг/м3.
На висотах біля 300 км щільність повітря має порядок розміру 10-11 кг/м3, тобто в сто мільярдів разом менше, ніж у земної поверхні. На висоті 500 км щільність повітря вже 10-12 кг/м3, на 750 км - 10-13 кг/м3 або ще менше. Ці значення щільності незначні порівняно з приземними. Але усе ж до висот біля 20 тис. км щільність повітря залишається значно більшою, ніж густина речовини в міжпланетному просторі.
Якби щільність повітря не змінювалася з висотою, а залишалася на всіх рівнях такою ж, як у земної поверхні, то висота атмосфери виявилася б рівною приблизно 8000 м. Ця висота (8000 м) називається висотою однорідної атмосфери. У дійсності щільність повітря з висотою убуває, і тому справжня висота атмосфери рівняється багатьом тисячам кілометрів.
2.16. ПРИВЕДЕННЯ ТИСКУ ДО РІВНЯ МОРЯ
Важливою задачею є приведення тиску до рівня моря. Знаючи тиск на деякій станції, розташованій на висоті z над рівнем моря, і температуру t на цій станції, обчислюють спочатку уявлювану середню температуру між температурами на розглянутій станції і на рівні моря. Для рівня станції береться фактична температура, а для рівня моря - та ж температура, але збільшена на стільки, наскільки у середньому змінюється температура повітря з висотою. Середній вертикальний градіент температури в тропосфері приймається рівним 0,6 °С на 100 м. Отже, якщо станція має висоту 200 м і температура на ній 16 °С, то для рівня моря приймається температура 17,2 °С, а середня температура стовпа між станцією і рівнем моря 16,6 °С. Після цього по тиску на станції і по отриманій середній температурі визначається тиск на рівні моря. Для цього складають особливі таблиці для кожної станції. Приведення тиску до рівня моря є дуже важливою операцією.
На приземні синоптичні карти завжди наноситься тиск, приведений до рівня моря. Цим виключається вплив розходжень у висотах станцій на значення тиску і стає можливим з'ясувати горизонтальний розподіл тиску.
2.17. ЗМІНИ АТМОСФЕРНОГО ТИСКУ З ВИСОТОЮ
Розподіл атмосферного тиску по висоті залежить від того, який тиск внизу і як розподіляється температура повітря з висотою. У багаторічному середньому виразі для Європи тиск на рівні моря дорівнює 1014 гПа, на висоті 5 км- 538 гПа, 10 км-262 гПа, 15 км- 120 гПа і 20 км - 56 гПа. На рівні 5 км тиск майже вдвічі нижче, ніж на рівні моря, на рівні 10 км - майже в чотири рази, на рівні 15 км - майже в 8 разів і на рівні 20 км-в 18 разів.
Ці значення підтверджують висновок, який можна зробити: у першому наближенні тиск убуває приблизно в геометричній прогресії, коли висота зростає в арифметичній прогресії. При більш точному дослідженні ця залежність описується кривою, що носить назву експоненти. Тому залежність тиску від висоти ще називають експоненціальною.
Тиск змінюється не тільки з висотою. На тому самому рівні він не скрізь однаковий. Це залежить від багатьох причин, які будуть розглянуті пізніше.
Знання атмосферного тиску дозволяє розрахувати загальну масу атмосфери. Середній атмосферний тиск на рівні моря близько до 1013 гПа. Знаючи площу земної поверхні і перевищення материків над рівнем моря, можна обчислити силу ваги, що діє на земну поверхню. Зневажаючи зміною сили ваги з висотою, можна вважати цю силу чисельно рівній масі атмосфери, помноженої на прискорення вільного падіння.
Загальна маса атмосфери, визначена таким чином, складає трохи більше 5х10 18кг, або 5х10 15т.
Це приблизно в мільйон разів менше, ніж маса самої земної кулі. При цьому, як уже говорилося, половина всієї маси атмосфери знаходиться в нижніх 5 км, три чверті - у нижніх 10 км і 95% - у нижніх 20 км.
2.18.АДІАБАТИЧНІ ПРОЦЕСИ В АТМОСФЕРІ
Дуже важливу роль в атмосферних процесах грає та обставина, що температура повітря може змінюватися і часто дійсно змінюється адіабатично, тобто без теплообміну з навколишнім середовищем (із навколишньою атмосферою, земною поверхнею і світовим простором). Строго адіабатичних процесів в атмосфері не буває: ніяка маса повітря не може бути цілком ізольована від теплового впливу навколишнього середовища. Однак якщо атмосферний процес протікає досить швидко і теплообмін за цей час малий, то зміну стану можна з достатнім наближенням вважати адіабатичним.
Якщо деяка маса повітря в атмосфері адіабатично розширюється, то тиск у ній падає, а разом із ним падає і температура. Навпаки, при адіабатичному стисканні маси повітря тиск і температура в ній зростають. Ці зміни температури, не зв'язані з теплообміном, відбуваються внаслідок перетворення внутрішньої енергії газу (енергії положення і руху молекул) у роботу або роботи у внутрішню енергію. При розширенні маси повітря робиться робота проти зовнішніх сил тиску, так називана робота розширення, на якій затрачається внутрішня енергія повітря. Але внутрішня енергія газу пропорційна його абсолютній температурі, тому температура повітря при розширенні падає. Навпроти, при стисканні маси повітря робиться робота стискання. Внутрішня енергія розглянутої маси повітря внаслідок цього зростає, тобто швидкість молекулярних рухів збільшується. Отже, зростає і температура повітря.
Сухоадіабатичні зміни температури
Закон, за яким відбуваються адіабатичні зміни стану в ідеальному газі, із достатньою точністю може бути застосований до сухого повітря, а також до ненасиченого вологого повітря. Цей сухоадіабатичний закон виражається рівнянням сухоадіабатичного процесу, або так званим рівнянням Пуассона.
Сухоадіабатичні зміни температури при
вертикальних рухах
В атмосфері розширення повітря і зв'язане з ним падіння тиску і температури відбуваються найбільшою мірою при висхідному русі повітря. Такий підйом повітря може відбуватися різними способами: у вигляді висхідних струмів конвекції; над поверхнею фронту - при русі великих шарів повітряної маси нагору по положистому клину іншої, більш холодної повітряної маси; при підйомі повітря по гірському схилу. Аналогічним способом стискання повітря, що супроводжується підвищенням тиску і температури, відбувається при опусканні, при низхідному русі повітря. Звідси важливий висновок: повітря, що піднімається, адіабатично вихолоджується, а те, що опускається -адіабатично нагрівається.
Неважко підрахувати, на скільки метрів повинне піднятися або опуститися повітря, щоб температура в ньому понизилася або підвищилася на один градус.
Відомо, що при адіабатичному підйомі сухого або ненасиченого повітря температура на кожні 100 м підйому падає майже на один градус, а при адіабатичному опусканні на 100 м температура зростає на це ж значення. Цей розмір називається сухоадіабатичним градіентом.
Вологоадіабатичні зміни температури
З адіабатичним підніманням вологого ненасиченого повітря пов'язана така важлива зміна, як наближення його до стану насичення. Температура повітря при його підйомі знижується, тому на якійсь висоті досягається насичення. Ця висота називається рівнем конденсації. При подальшому підйомі вологе насичене повітря прохолоджується інакше, ніж ненасичене. У ньому відбувається конденсація і виділяється в значних кількостях теплота паротворення, або теплота конденсації (2,501х106 Дж/кг). Виділення цієї теплоти сповільнює зниження температури повітря при підйомі. Тому в насиченому повітрі, що піднімається, температура падає вже не сухоадіабатично, а по вологоадіабатичному закону. Вона падає тим повільніше, чим більше вологоутримання повітря в стані насичення (що у свою чергу залежить від температури і тиску). На кожні 100 м підйому насичене повітря при тиску 1000 гПа і температурі 0°С прохолоджується на 0,66°С, при температурі 20 °С - на 0,44 °С і при температурі -20 °С - на 0,88°С. При більш низькому тиску спад температури відповідно менше.
Спад температури в насиченому повітрі при підйомі його на одиницю висоти (100м) називають вологоадіабатичним градіентом. При дуже низьких температурах, що спостерігаються при підйомі у високі шари атмосфери, водяної пари в ньому залишається мало і виділення теплоти конденсації тому також мало. Спад температури при підйомі в такому повітрі наближається до падіння в сухому повітрі. Інакше кажучи, вологоадіабатичний градіент при низьких температурах наближається до сухоадіабатичного.
При опусканні насиченого повітря процес може відбуватися по-різному в залежності від того, чи містить повітря продукти конденсації (краплі і кристали) або вони вже цілком випали з повітря у вигляді опадів. Якщо в повітрі немає продуктів конденсації, то повітря, як тільки температура в ньому почне при опусканні зростати, відразу стане ненасиченим. Тому повітря, опускаючись, буде нагріватися сухоадіабатично, тобто на 1 °С/100 м. Якщо ж у повітрі є краплі і кристали, то вони при опусканні і нагріванні повітря будуть поступово випаровуватися. При цьому частина тепла повітряної маси перейде в теплоту паротворення, і тому підвищення температури при опусканні сповільниться. У результаті повітря буде залишитися насиченим доти, поки всі продукти конденсації не перейдуть у газоподібний стан. А температура в ньому буде в цей час підвищуватися вологоадіабатично: не на 1 °С/100 м, а на менше значення - саме на таке, на яке понизилася б температура у висхідному насиченому повітрі при тих же значеннях температури і тиску.
Псевдоадіабатичний процес
Уявимо собі, що вологе ненасичене повітря спершу піднімається. Його температура при цьому падає спочатку сухоадіабатично, потім, після того як було досягнуто рівня конденсації, вологоадіабатично. Припустимо також, що вся вода, що виділяється при конденсації, відразу ж випадає з повітря у вигляді опадів. Допустимо потім, що, досягнувши деякої висоти, повітря починає опускатися. Тому що продуктів конденсації в ньому немає, воно буде при цьому нагріватися сухоадіабатично. Легко розрахувати, що на колишній рівень повітря прийде з температурою більш високою, ніж та, що була в ньому спочатку. У розглянутій масі повітря відбувся необоротний процес. Хоча вона повернулася на колишній рівень, під колишній тиск, вона не повернулася у вихідний стан: її кінцева температура виявилася вище, чим початкова. Такий процес називається псевдоадіабатичним.
Потенційна температура
Нехай на якійсь висоті в атмосфері є повітря з тиском р і температурою Т. Якби це повітря сухоадіабатично опустилося на рівень, де існує тиск ро, те температура його теж змінилася б. Назвемо цю температуру, що повітря одержало б при тиску 1000 гПа, його потенційною температурою. Фактичну температуру повітря, на відміну від потенційної, будемо називати просто температурою. Очевидно, що потенційна температура дорівнює температурі повітря при тиску 1000 гПа.
Потенційну температуру можна з достатнім наближенням визначити, якщо відомо, на якій висоті повітря знаходиться. Нехай, наприклад, ця висота дорівнює 3000 м. Припустимо, що на рівні моря тиск дорівнює 1000 гПа (у середньому воно близько до цього значення). Тоді потенційна температура, тобто температура, із яким воно прийшло б на рівень моря, дорівнює його початковій температурі + 30 °С, тому що на кожні 100 м спуску температура повітря повинна зростати на один градус. За допомогою потенційної температури можна порівнювати тепловий стан мас повітря, що знаходяться на різних висотах над рівнем моря, тобто при різних тисках. Вираховуючи потенційну температуру цих мас, ми ніби опускаємо їх на один рівень. При зміні стану повітря за сухоадіабатичним законом потенційна температура повітря не змінюється.
Нехай, наприклад, повітря з температурою 10°С знаходиться на висоті 3000 м. Його потенційна температура, відповідно до сказаного вище, буде біля 40 °С. Припустимо тепер, що повітря спочатку адіабатично піднялося з рівня 3000 м на рівень 3200 м. При цьому його температура понизиться на 2 °С і стане 8°С. Але якщо тепер адіабатично опустити повітря на рівень моря, те воно нагріється вже на 32 °С і, отже, прийде на рівень моря з тієї ж температурою 40°С, що і є його потенційною температурою.
Тільки коли починається конденсація і виділяється теплота конденсації, потенційна температура зростає.
2.19. ВЕРТИКАЛЬНИЙ РОЗПОДІЛ ТЕМПЕРАТУРИ ПОВІТРЯ
Як вже було зазначено, адіабатичні процеси визначають зміни температури у визначеній масі повітря, що адіабатично піднімається або опускається. Ні в якому разі не варто змішувати ці індивідуальні зміни з вертикальним розподілом температури в атмосфері. Температура в атмосферному стовпі може розподілятися по висоті різним способом. Цей розподіл не підпорядкований ніякій простій закономірності, і крива, що зображує цей розподіл у більш-менш товстому шарі атмосфери, у загальному випадку є складною кривою. Уявлення про розподіл температури з висотою дає вертикальний градієнт температури, тобто зміна температури в атмосфері на одиницю висоти, звичайно на 100 м.
Вертикальний градієнт температури може змінюватися в досить широких межах. У нижніх 10 км у помірних широтах і в нижніх 15 км у тропіках він у середньому дорівнює 0,6°С/100 м. У нижніх сотнях метрів над нагрітою підстилаючою поверхнею він може перевищувати 1 °С/100 м, а в тонкому приземному шарі над перегрітою землею може бути в багато разів більше. Бувають і такі випадки, коли температура повітря з висотою не падає, а зростає. Такий розподіл температури називають інверсією температури. Інверсії особливо часті по ночах у приземному шарі, але зустрічаються на різних висотах і у вільній атмосфері. Якщо температура в повітряному шарі не змінюється з висотою, тобто вертикальний градіент її дорівнює нулю, то такий стан шару називають изотермією. Вище 10-15 км і до висоти біля 50 км вертикальний розподіл температури навіть у середньому є ізотермічним або інверсійним.
Якщо температура повітря з висотою змінюється, то змінюється також і потенційна температура. Тільки у випадку, коли температура падає з висотою на 1°С/100 м, потенційна температура залишається з висотою незмінною. Це пояснюють найпростіші міркування. При зазначеному градіенті температури з якого б рівня не була опущена повітряна частка на рівень моря, вона, адіабатично нагрівшись, одержить на рівні моря ту саму температуру. Таким чином, виходить, що потенційна температура на всіх рівнях однакова.
У випадку, коли вертикальний градіент температури менше 1 °С/100 м, що є типовим розподілом, потенційна температура з висотою зростає. І тільки в тих випадках, коли вертикальний градіент температури більше 1 °С/100 м, потенційна температура з висотою зменшується.
У ізотермічному шарі потенційна температура зростає з висотою на 1 °С на 100 м. Ще швидше зростає вона в шарі інверсії, тобто при явищі збільшення температури повітря з висотою.
2.20. ВІТЕР І ТУРБУЛЕНТНІСТЬ
Залежно від розподілу атмосферного тиску повітря постійно переміщується в горизонтальному напрямку. Це горизонтальне переміщення називається вітром. Швидкість і напрямок вітру увесь час змінюються. Середні швидкості вітру в земної поверхні близькі до 5-10 м/с. Але іноді, у сильних атмосферних вихорах, швидкості вітру в земної поверхні можуть досягати і перевищувати 50 м/с. У високих шарах атмосфери, у так називаних струменевих течіях, регулярно спостерігаються швидкості вітру до 100 м/с і більше.
До горизонтального переносу повітря приєднуються і вертикальні складові. Вони звичайно малі порівняо з горизонтальним переносом, порядку сантиметрів або десятих часток сантиметра в секунду. Тільки в особливих умовах, при так званій конвекції, у невеликих ділянках атмосфери вертикальні складові швидкості руху повітря можуть досягати декількох метрів у секунду.
Вітер завжди характеризується турбулентністю. Це значить, що окремі частинки повітря в потоці вітру переміщуються не рівнобіжними шляхами. У повітрі виникають численні вихори, що безладно рухаються, і струмені різних розмірів. Окремі кількості повітря, що захоплюються цими вихорами і струменями, так називані елементи турбулентності, рухаються в усіх напрямках, у тому числі і перпендикулярно до загального або середнього напрямку вітру і навіть проти нього. Ці елементи турбулентності - не молекули, а великі об'єми повітря, лінійні розміри яких вимірюються сантиметрами, метрами, десятками метрів. Таким чином, на загальний перенос повітря у визначеному напрямку і з визначеною швидкістю накладається система хаотичних, безладних рухів окремих елементів турбулентності по складних траєкторіях, що переплітаються.
Турбулентний характер руху повітря можна добре бачити, спостерігаючи за падінням сніжинок при вітрі. Сніжинки падають не вертикально вниз і не під тим самим кутом до вертикалі. Вони безладно танцюють у повітрі, то злітаючи нагору, то опускаючись, описуючи складні петлі. Це пояснюється саме тим, що сніжинки беруть участь у русі елементів турбулентності, тим самим роблячи цей рух видимим. Турбулентний характер вітру виявляється і при спостереженнях над поширенням диму в атмосфері.
Турбулентність виникає внаслідок розходження швидкостей вітру в суміжних шарах повітря. Особливо велика вона в нижніх шарах атмосфери, де швидкість вітру швидко зростає з висотою. Але в розвитку турбулентності бере участь і так звана архімедова, або гідростатична, сила. Окремі частинки повітря піднімаються нагору, якщо їхня температура вища, а, значить, і щільність менше, ніж температура і щільність навколишнього повітря. Навпаки, частинки повітря більш холодні і щільні, ніж навколишнє повітря, опускаються вниз. Таке перемішування повітря за рахунок розходжень щільності відбувається тим інтенсивніше, чим швидше падає температура з висотою, тобто чим більше вертикальний градіент температури. Тому можна умовно говорити про динамічну турбулентність, що виникає незалежно від температурних умов, і про термічну турбулентність (або конвекції), обумовленої температурними умовами. Однак у дійсності турбулентність завжди має комплексну природу, і правильніше буде говорити про більшу або меншу роль термічного чинника в її виникненні і розвитку.
Турбулентність із переваженням термічних причин за певних умов більш-менш різко змінює свій «масштаб»: перетворюється в упорядковану конвекцію. Замість дрібних турбулентних вихорів, що рухаються хаотично, у ній починають переважати потужні висхідні рухи повітря типу токів або струмів, із швидкостями порядку декількох метрів у секунду, іноді понад 20 м/с. Такі потужні висхідні струми повітря називають терміками. Ними широко користуються планеристи, годинами знаходячись у повітрі, а про великих птахів нічого вже й говорити. Для них це рідна стихія, в якій вони можуть пересуватись на сотні і тисячі кілометрів. Поряд із ними спостерігаються і низхідні рухи, менш інтенсивні, але захоплюючі великі площі.
З такою упорядкованою конвекцією зв'язане утворення потужних хмар вертикального розвитку - купчастих і купчасто-дощових (зливових). Для виникнення конвекції такого роду необхідно, щоб вертикальний градіент температури був близький до 1 °С/100 м або дещо більше того, принаймні до того рівня, починаючи з якого виникають хмари.
Дата добавления: 2015-09-11; просмотров: 2177;