Основные направления компьютерной графики

Введение в компьютерную графику

Самая важная функция компьютера – обработка информации. Особо можно выделить обработку информации, связанную с изображениями. Она разделяется на три основные направления: визуализация, обработка и распознавание изображений.

Визуализация – создание изображения на основе описания (модели) некоторого объекта:

 
 

Существует большое количество методов и алгоритмов визуализации, которые различаются между собой в зависимости от того, что и как должно быть отображено: график функции, диаграмма, схема, карта или имитация трехмерной реальности – изображения сцен в компьютерных развлечениях, художественных фильмах, тренажерах, в системах архитектурного проектирования. Важными и связанными между собой факторами здесь являются: скорость изменения кадров, насыщенность сцены объектами, качество изображения, учет особенностей графического устройства.

Обработка изображений – это преобразование изображений, т.е. входными данными является изображение и результат – тоже изображение:

 
 

Примерами обработки изображений могут служить повышение контраста, четкости, коррекция цветов, редукция цветов, сглаживание, уменьшение шумов и т.д. В качестве материала обработки могут быть космические снимки, отсканированные изображения, радиолокационные, инфракрасные изображения и т.п. Задачей обработки изображений может быть как улучшение в зависимости от определенного критерия (реставрация, восстановление), так и специальное преобразование, кардинально изменяющее изображение. В последнем случае обработка изображений может быть промежуточным этапом для дальнейшего распознавания изображения. Например, перед распознаванием часто необходимо выделять контуры, создавать бинарное изображение, разделять исходное изображение по цветам. Методы обработки изображения могут существенно различаться в зависимости от того, каким путем оно получено: синтезировано системой КГ, получено в результате оцифровки черно-белой или цветной фотографии.

Основной задачей распознавания изображений является получение описания изображенных объектов. Методы и алгоритмы распознавания разрабатывались, прежде всего, для обеспечения зрения роботов и для систем специального назначения. Но в последнее время компьютерные системы распознавания изображений все чаще появляются в повседневной практике, например, офисные системы распознавания текстов или программы векторизации.

Цель распознавания может формулироваться по-разному: выделение отдельных элементов (например, букв текста на изображении документа или условных знаков на изображении карты), классификация изображения в целом (например, проверка, изображен ли определенный объект, или установление персоны по отпечаткам пальцев).

Методы классификации и выделения отдельных элементов могут быть взаимосвязаны. С одной стороны, классификация может быть выполнена на основе структурного анализа отдельных элементов объекта, с другой – для выделения отдельных элементов изображения можно использовать методы классификации.

Задача распознавания является обратной по отношению к визуализации:

 
 

Сферы применения компьютерной графики:

● САПР (системы автоматизированного проектирования);

● деловая графика (графическое представление данных);

● визуализация процессов и явлений в научных исследованиях (компьютерное графическое моделирование);

● медицина (компьютерная томография, УЗИ и т.д.);

● геодезия и картография (ГИС);

● полиграфия (схемы, плакаты, иллюстрации);

● сфера массовой информации (графика в Интернете, иллюстрации, фото);

● кинематография (спецэффекты, компьютерная мультипликация);

● быт (компьютерные игры, графические редакторы, фотоальбомы).

Столь широкое распространение компьютерная графика получила с появлением интерактивных графических систем.

Понятие "интерактивная компьютерная графика" (ИКГ) предполагает способность компьютерной системы создавать графику и вести диалог с человеком. В системе ИКГ пользователь воспринимает на дисплее изображение, представляющее некоторый сложный объект, и может вносить изменения в описание (модель) объекта. Такими изменениями могут быть ввод и редактирование отдельных элементов, задание числовых значений для любых параметров, различные операции по вводу информации на основе восприятия изображений человеком. В настоящее время почти любую программу можно считать системой интерактивной компьютерной графики.

Исторически первыми интерактивными системами считаются системы автоматизированного проектирования (САПР), которые появились в 60-х годах XX века. Они используются во многих областях: машиностроение, электроника, проектирование самолетов и автомобилей, при разработке микроэлектронных интегральных схем, в архитектуре.

Все более популярными становятся геоинформационные системы (ГИС). Они используют методы и алгоритмы многих наук и информационных технологий: последние достижения технологий баз данных, в них заложены многие алгоритмы и методы математики, физики, геодезии, топологии, картографии, навигации и, конечно же, компьютерной графики. Системы типа ГИС зачастую требуют значительных мощностей компьютера как для работы с базами данных, так и для визуализации объектов.

Типичными для любой ГИС являются следующие операции: ввод и редактирование объектов с учетом их расположения на поверхности Земли; формирование разнообразных цифровых моделей и хранение их в базах данных; анализ множества объектов, расположенных на некоторой территории, с учетом пространственных, топологических отношений.

Важным этапом развития систем КГ являются системы виртуальной реальности (virtual reality). Наращивание мощностей компьютера, повышение реалистичности трехмерной графики, совершенствование способов диалога с человеком позволяют создавать иллюзию вхождения человека в виртуальное пространство, которое может быть моделью существующего или выдуманного пространства. Системы класса виртуальной реальности для диалога с компьютером обычно используют такие устройства, как шлем-дисплей, сенсоры на теле человека.

Широко используется КГ в кинематографии. Одним из первых примеров был фильм "Звездные войны", созданный с помощью суперкомпьютера Cray. До недавнего времени технологии компьютерной графики использовались для спецэффектов, создания изображений экзотических чудовищ, имитации стихийных бедствий и других элементов, которые являлись лишь фоном для игры живых актеров. В 2001 г. вышел на экраны полнометражный кинофильм "Финальная фантазия", в котором все, включая изображения людей, синтезировано компьютером – живые актеры только озвучили роли за кадром.

Важное место занимает компьютерная графика в Интернете. В этих целях совершенствуются методы передачи визуальной информации, разрабатываются новые графические форматы.

В современных компьютерных играх значительную роль играют анимация, реалистичность изображений, совершенство способов ввода-вывода информации. Следует отметить, что во многих игровых программах используются идеи и методы, разработанные для профессиональных компьютерных систем, таких как тренажеры для летчиков.

Деловая графика

Понятие деловой графики включает методы и средства графической интерпретации научной и деловой информации: таблицы, схемы, диаграммы, иллюстрации, чертежи.

Среди программных средств КГ особое место занимают средства деловой графики. Они предназначены для создания иллюстраций при подготовке отчетной документации, статистических сводок и других иллюстративных материалов. Программные средства деловой графики включаются в состав текстовых и табличных процессоров.

В среде MS Office имеются встроенные инструменты для создания деловой графики: графический редактор Paint, средство MS Graph, диаграммы MS Excel .

Остановимся подробнее на типах и приемах создания диаграмм, поскольку диаграммы являются мощным средством визуализации данных.

Типы и виды диаграмм. Назначение. В пакете Excel имеются следующие основные типы диаграмм.

1. Гистограмма. Отображает значения различных категорий. Виды:

· обычная гистограмма;

· объемный вариант обычной гистограммы;

· трехмерная гистограмма. Показывает раскладку значений по категориям и рядам данных;

· гистограмма с накоплением. Отображает вклад каждой категории в общую сумму;

· объемный вариант гистограммы с накоплением;

· гистограмма, нормированная на 100%. Отражает долю каждой категории в общей сумме;

· объемный вариант нормированной гистограммы.

2. Линейчатая диаграмма. По использованию является аналогом гистограммы. Виды те же.

3. График. Отображает развитие процесса во времени или по категориям. Виды:

· обычный;

· график с маркерами – график, на котором помечены точки данных;

· объемный вариант графика;

· график с накоплением. Хорошо отображает изменение общей суммы по времени или по категориям;

· график с накоплением с маркерами;

· нормированный график. Отображает изменение вклада каждого значения во времени или по категориям;

· нормированный график с маркерами.

4. Круговая диаграмма. Отображает один ряд данных. Виды:

· обычная круговая диаграмма. Отображает вклад каждого значения (в %) в общую сумму;

· разрезанная круговая диаграмма. Отображает вклад каждого значения в общую сумму, выделяя отдельные элементы;

· объемный вариант обычной круговой диаграммы;

· объемный вариант разрезанной круговой диаграммы;

· вторичная круговая диаграмма – круговая диаграмма с частью значений, вынесенных во вторую диаграмму (для облегчения работы с маленькими секторами в основной диаграмме их можно объединить в один элемент, а затем разбить в отдельную диаграмму рядом с основной);

· вторичная гистограмма – круговая диаграмма с частью значений, вынесенных в гистограмму.

5. Кольцевая диаграмма. Отображает несколько рядов данных, причем каждое кольцо соответствует одному ряду данных и показывает вклад каждого значения в общую сумму ряда. Виды те же, что и у круговой диаграммы.

6. Точечная диаграмма. Или показывает отношения между численными значениями в нескольких рядах данных, или отображает две группы чисел как один ряд координат X и Y. Эта диаграмма показывает неравные промежутки, или кластеры, данных и обычно используется для отображения результатов научных исследований. Виды:

· точечная диаграмма со значениями, соединенными сглаживающими линиями (с маркерами или без них);

· точечная диаграмма со значениями, соединенными отрезками (с маркерами или без них).

7. Пузырьковая диаграмма. Отображает на плоскости наборы из трех значений. Подобна точечной диаграмме, но третья величина отображается размером пузырька.

8. С областями. Хорошо отображает изменение значений ряда с течением времени. Виды:

· обычная;

· диаграмма с областями с накоплением. Отображает как изменение общей суммы, так и изменение вклада отдельных значений;

· нормированная диаграмма с областями. Отображает изменение вклада значений с изменением времени.

9. Лепестковая диаграмма. Является аналогом графика в полярной системе координат, отображает распределение значений относительно начала координат. В лепестковой диаграмме каждой категории соответствует своя ось координат. Линиями соединяются значения, относящиеся к одному ряду. Виды:

· обычная;

· лепестковая диаграмма с маркерами;

· заполненная лепестковая диаграмма. Отличается от обычной тем, что области, относящиеся к каждому ряду, закрашены разными цветами.

10. Биржевая диаграмма. Виды:

· обычная. Отображает наборы данных из трех значений (например, самый высокий курс, самый низкий курс, курс закрытия);

· биржевая диаграмма для наборов из четырех значений (курс открытия, курс закрытия, самый высокий курс, самый низкий курс);

· биржевая диаграмма для наборов из четырех значений (курс закрытия, самый высокий курс, самый низкий курс, объем). Для объема используется дополнительная ось, параллельная оси Y;

· биржевая диаграмма для наборов из пяти значений (курс открытия, курс закрытия, самый высокий курс, самый низкий курс, объем).

11. Поверхность. Отображает изменение значений по двум измерениям в виде поверхности. Такую диаграмму целесообразно использовать для поиска наилучшего сочетания в двух наборах данных. Виды:

· обычная – области, относящиеся к одному диапазону, выделяются одинаковым цветом или узором;

· проволочная (прозрачная);

· контурная. Представляет собой вид сверху на поверхность диаграммы. Цвета представляют интервалы значений;

12. Коническая, цилиндрическая, пирамидальная диаграмм-мы – гистограммы или линейчатые диаграммы, в которых значения представлены не прямоугольниками, а конусами, цилиндрами или пирамидами.

Существуют еще и нестандартные типы. Из них наиболее интересным и иллюстративным является совмещенная диаграмма, включающая гистограмму и график.

Кроме указанных выше видов диаграмм, MS Excel предоставляет пользователю средство для иллюстрации структурированного отчета по нескольким таблицам данных, характеризующим некоторую сферу. Это так называемый отчет сводной диаграммы.

Отчет сводной диаграммы – интерактивная диаграмма с данными графического анализа существующих списков, баз данных и отчетов сводных таблиц. Создав отчет сводной диаграммы, его можно просматривать на различных уровнях подробности. Для изменения структуры диаграммы можно перетаскивать мышью ее поля и элементы или выбирать в раскрывающихся списках полей элементы, которые должны отображаться на экране.

Отчет сводной диаграммы следует использовать в случаях, когда требуется быстро изменять вид диаграммы и просматривать данные в различных представлениях для сравнения данных и выявления тенденций.

Лекция 2








Дата добавления: 2015-11-20; просмотров: 1491;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.031 сек.