Применение их соединений в медицине. Кислород.По содержанию в организме человека (мас

 

Кислород.По содержанию в организме человека (мас. доля 62%) кислород относится к макроэлементам. Он незаменим и принадлежит к числу важнейших элементов, составляющих основу живых систем, т.е. является органогеном. Кислород входит в состав огромного числа молекул, начиная от простейших и кончая биополимерами. Исключительно велика роль кислорода в процессах жизнедеятельности, так как окисление кислородом питательных веществ — углеводов, белков, жиров — служит источником энергии, необходимой для работы органов и тканей живых организмов. Большинство окислительно-восстановительных реакций в организме протекает при участии кислорода и его активных форм.

Фагоцитарные (защитные) функции организма также связаны с наличием кислорода, и уменьшение содержания кислорода в организме понижает его защитные свойства.

В фагоцитах (клетках, способных захватывать и переваривать посторонние тела) кислород О2 восстанавливается до супероксид-иона О2-. Ион О2- — радикал, инициирующий радикальноцепные процессы окисления инородных органических веществ RН, захваченных фагоцитами.

При недостатке кислорода эти процессы замедляются, и в результате сопротивляемость организма к инфекциям снижается.

В медицинской практике кислород применяют для вдыхания при болезненных состояниях, сопровождающихся кислородной недостаточностью (гипоксией), заболеваниях дыхательных путей, сердечно-сосудистой системы, отравлениях оксидом углерода (II) СО, синильной кислотой НСN, а также при заболеваниях с нарушениями функций дыхания.

Широко используется в клинической практике гипербарическая оксигена-ция — применение кислорода под повышенным давлением. Установлено, что гипербарическая оксигенация значительно улучшает кислородное насыщение тканей, гемодинамику, защищает головной мозг от гипоксии. Этот метод лечения с высокой эффективностью применяют в кардиологии, реанимации, неврологии, хирургии и других областях медицины. Для общего улучшения обменных процессов при лечении сердечно-сосудистых заболеваний в желудок вводят кислородную пену в виде так называемого кислородного коктейля.

Аллотропную модификацию кислорода — озон О3 как очень сильный окислитель используют для дезинфекции помещений, обеззараживания воздуха и очистки питьевой воды. Небольшая примесь озона в воздухе создает ощущение приятной свежести и благотворно действует на состояние человека, особенно легоч­ных больных.

При использовании кислорода О2 и озона О3 следует учитывать их токсичность, обусловленную интенсификацией процессов окисления в организме.

Сера.По содержанию в организме человека (мас. доля 0,16%) сера относится к макроэлементам. Как и кислород, она жизненно необходима. Суточная потребность взрослого человека в сере около 4—5г. Сера входит в состав многих биомолекул — белков, аминокислот (цистина, цистеина, метионина и др.). гормонов (инсулина), витаминов (витамин В12). Много серы содержится в каротине волос, костях, нервной ткани.

Аминокислоты, содержащие серу, характеризуются наличием водородсульфидных (тиоловых) —SН-групп (например, цистеин) или наличием дисульфидных связей —S—S— (например, цистин). При окислении тиоловых групп образуются дисульфидные связи и, наоборот, при восстановлении связей —S—S— образуются SН-группы, т.е. эти переходы обратимы:

R1—S—S—R2 ⇄ R1SН + R2

В некоторой степени этот обратимый переход защищает организм от радиационных поражений. Под влиянием ионизирующего облучения в результате радиолиза воды в организме образуются свободные радикалы, в том числе весьма активные Н• и ОН• , инициирующие процессы окисления. Водородсульфидные группы вступают в реакции со свободными радикалами:

RSН + ОН• → RS• + Н2O

Радикалы RS• малоактивны. Тем самым предотвращается воздействие активных радикалов на нуклеиновые кислоты и другие биомолекулы.

В живых организмах сера, входящая в состав аминокислот, окисляется. Конечными продуктами этого процесса преимущественно являются сульфаты. Кроме того, образуются тиосульфаты, элементная сера и политионовые кислоты:

Образующаяся в организме эндогенная серная кислота участвует в обезвреживании ядовитых соединений — фенола, крезола, индола, вырабатываемых в кишечнике из аминокислот микробами. Кроме того, серная кислота связывает многие чужеродные для организма соединения (ксенобиотики) —лекарственные препараты и их метаболиты. Со всеми этими соединениями серная кислота образует относительно безвредные вещества — конъюгаты, в виде которых они и выводятся из организма. Например, с мочой человека выделяется конъюгат — калиевая соль сернокислого эфира фенола:

В медицинской практике широко применяют как саму серу, так и многие ее соединения: сера осажденная, натрий тиосульфат, сульфаты натрия, меди, цинка и др.

Селен.По содержанию в организме (мас доля 10-5—10-7%) селен относится к микроэлементам. Некоторые исследователи относят его к жизненно необходимым элементам.

Селен поступает с пищей — 55—110мг в год. Селен в основном концентрируется в печени и почках. Концентрация селена в крови составляет 0,001—0,004 ммоль/л.

Несомненна связь селена с серой в живых организмах. При больших дозах селен в первую очередь накапливается в ногтях и волосах, основу которых составляют серосодержащие аминокислоты. Очевидно, селен как аналог серы замещает ее в различных соединениях:

R—S—S—R → R—Sе—Sе—R

Токсическое действие селенитов и селенатов на сельскохозяйственных животных давно известно Связанные с селеном заболевания скота наблюдались в местах, где в почве в повышенных количествах присутствуют эти соли. Тем неожиданнее оказались результаты опытов, в которых было обнаружено, что селен, правда, в значительно меньших количествах должен содержаться в пище крыс, цыплят, телят, ягнят и кроликов.

Установлено, что недостаток селена ведет к уменьшению концентрации фермента глутатионпероксидазы, что, в свою очередь, приводит к окислению линидов и серосодержащих аминокислот.

Проведенные в последние годы исследования показали, что селен в комплексе с какой-либо кислотой входит в состав активных центров нескольких ферментов: формиатдегидрогеназы, глутатионредуктазы и глутатионпероксидазы. В частности, в активном центре глутатионпероксидазы содержится остаток необычной аминокислоты — селеноиистеина:

Этот фермент вместе с белком глутатионом и защищает клетки от разрушающего действия органических пероксйдов RООН и пероксида водорода. Возможно, что водородселенидная группа —SеН остатка селеноцистеина обладает какими-то преимуществами по сравнению с водородсульфидной группой —SН в механизме действия этого и других селенсодержащих ферментов.

Следует отметить, что компенсация недостатка селена в организме путем добавления в рацион крыс натрия селенита Nа2SеО3 способствовала предохранению от некроза тканей. Это еще раз подчеркивает физиологическую роль селена в процессе жизнедеятельности.

Хорошо известна и способность селена предохранять организм от отравления ртутью Нg и кадмием Сd. Оказалось, что селен способствует связыванию этих токсичных металлов с другими активными центрами — с теми, на которые их токсическое действие не влияет. Интересным является и факт взаимосвязи между высоким содержанием селена в .рационе и низкой смертностью от рака.

В больших дозах, как уже отмечалось, селен токсичен. Распад соединений селена в организме животных приводит к выделению высокотоксичного диметилселена СН3—Sе—СН3, имеющего чесночный запах. Установлен механизм этой реакции. При взаимодействии селенистой кислоты H2SеО3 с глутатионом образуются соединения, содержащие группу —S—Sе—S—

Н2SеО3 + 4GSН → GSSeSG + GSSG + 3Н2О

Под действием ферментов соединения, содержащие группу —S—Sе—S—, восстанавливаются до диводородселенида:

GSSeSG → H2

который затем присоединяет метильные группы, образуя диметилселен.

Теллур и полоний. Теллур обнаружен в живых организмах. Норма его содержания в тканях и органах не установлена. Не выяснен и вопрос, играет ли он какую-нибудь биологическую роль в живых организмах. Известно только, что введение в организм в избытке соединений теллура ведет, как и в случае селена, к замещению серы в тиоловых группах, что приводит к ингибированию ферментов.

Данные о влиянии полония на живые организмы отсутствуют.

Таким образом, среди элементов VIА-группы жизненно необходимыми являются макроэлементы кислород и сера. Селен физиологически активен, а биологическое действие теллура и полония не выявлено. В живых организмах кислород, сера и селен входят в состав биомолекул в степени окисления —2, причем вследствие близости физико-химических характеристик их атомов сера, селен и теллур могут замещать друг друга в соединениях Наблюдаются как случаи синергизма, так и анта­гонизма этих элементов.

 








Дата добавления: 2015-08-14; просмотров: 3301;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.