ПЛАСТИЧЕСКИЙ ОБМЕН. АССИМИЛЯЦИЯ

По типу ассимиляции все клетки делятся на две группы — автотрофные и гетеротрофные.

Автотрофные клетки способны к самостоятельному синтезу необходимых для них органических соединений за счет СО2, воды и энергии света (фотосинтез) или энергии, выделившейся при окислении неорганических соединений (хемосинтез). К автотрофам принадлежат все зеленые растения и некоторые бактерии.

Гетеротрофные клетки не способны синтезировать органические вещества из неорганических. Эти клетки для жизнедеятельности нуждаются в поступлении органических соединений: углеводов, белков, жиров. Гетеротрофами являются все животные, большая часть бактерий, грибы, некоторые высшие растения — сапрофиты и паразиты, а также клетки растений, не содержащие хлорофилл.

Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах.

Фотосинтез — синтез органических соединений, идущий за счет энергии солнечного излучения.

СВЕТОВАЯ ФАЗА: Во время световой фазы энергия солнечного света (или энергия искусственных источников света) улавливается зелеными растениями и превращается в химическую энергию, заключенную в органических веществах, богатых энергией (богатых энергией АТФ, НАДФ и т.д.). В последующем энергия этих богатых энергией соединений используется в клетке для процессов биосинтеза, которые могут происходить как на свету, так и в темноте.

Во время световой фазы фотосинтеза кванты света поглощаются электроном в молекуле хлорофилла. Молекулы хлорофилла могут поглощать солнечные лучи разной длинны

Первый этап (световой) происходит в тилакоидах; цель - образование аккумуляторов энергии: АТФ и НАДФ*Н (никатинамиддинуклеатидфосфат*Н)

Молекула хлорофилла 1 , поглощает квант света, при этом из неё выбивается электрон, он переходит на более высокий энергетический уровень, а затем подхватывается молекулами переносчиками. Электрон перескакивает с одного переносчика на другой, теряя энергию, эта энергия идет на фосфорилирование (на ,сственный отбор синтеза ДНК.месте электрона образуется дырка). В конце переносчиков электрон подхватывается НАДФ+. В результате один из электронов приобретает большой запас энергии и покидает хлорофилл. Эта энергия используется для синтеза АТФ и восстановления НАДФ, что приводит к образованию восстановленного никотинамидадениндинуклеотидфосфата НАДФ*Н.

Молекула хлорофилла 2 под воздействием кванта света теряет электрон (дырка). Электрон подхватывается молекулами переносчиками, теряет энергию (на синтез АТФ). Электрон идет в хлорофилл 1 (закрывает дырку). Вместе с тем солнечный свет приводит к фотолизу воды — разложению воды на ион водорода Н+ и ион гидроксила ОН- . Одновременно с этим ион гидроксила отдает свой электрон е. хлорофиллу, а возникающие радикалы ОН образуют воду и кислород Образующийся таким образом кислород выделяется зелеными растениями, что в течение многих сотен миллионов лет привело к созданию кислородной атмосферы Земли. В настоящее время зеленые растения продолжают непрерывно обогащать кислородом атмосферу нашей планеты.

Водород идет к НАДФ, а электрон в дырку 2.

Итог: синтез АТФ, НАДФ*Н и молекулярный кислород.

ТЕМНОВАЯ ФАЗА ФОТОСИНТЕЗА связана с использованием макроэргических веществ (АТФ, НАДФ • Н и некоторых других) для синтеза различных органических соединений (главным образом углеводов).

Цель: синтез органических веществ в строме (в полости хлоропластов )

Углекислый газ СО2 связывается с производными рибозы с образованием глюкозы:

6 СО2 +18АТФ+ 12НАДФ*Н= С6Н12О6 .

Значение фотосинтеза:

1. Насыщение атмосферы кислородом

2. Поглощение углекислого газа из атмосферы

3. Первичный источник органических веществ на планете – растения

4. Космическая роль зеленых растений: преобразуют солнечную энергию, в энергию химических связей органических веществ (доступную всем живым организмам)

Кроме фотосинтеза существует еще одна форма автотрофной ассимиляции — хемосинтез.

Хемосинтез. Способность синтезировать органические вещества из неорганических свойственна также некоторым видам бактерий, у которых нет хлорофилла. Способ, с помощью которого они мобилизуют энергию для синтетических реакций, принципиально иной, нежели у растительных клеток. Бактерии используют для синтеза энергию химических реакций. Они обладают специальным ферментным аппаратом, позволяющим им преобразовывать энергию химических реакций, в частности энергию окисления неорганических веществ, в химическую энергию синтезируемых органических соединений. Этот процесс называют хемосинтезом.

Из хемосинтетиков важны азотфиксирующие и нитрифицирующие бактерии. Источником энергии у одной группы этих бактерий служит реакция окисления аммиака в азотистую кислоту; другая группа использует энергию, выделяющуюся при окислении азотистой кислоты в азотную.

Хемосинтетиками являются железобактерии и серобактерии. Первые из них используют энергию, освобождающуюся при окислении двухвалентного железа в трехвалентное; вторые окисляют сероводород до серной кислоты. Роль хемосинтетиков очень велика, особенно азотфиксирующих бактерий. Они имеют важное значение для повышения урожайности, так как в результате жизнедеятельности этих бактерий азот, находящийся в воздухе, недоступный для усвоения растениями, превращается в аммиак ,который хорошо ими усваивается.

Автотрофы – организмы синтезирующие органические вещества из неорганических (Растения, некоторые бактерии)

Гетеротрофы – организмы потребляющие органические вещества в готовом виде (животные, грибы).








Дата добавления: 2015-08-08; просмотров: 1667;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.