ПЛАСТИЧЕСКИЙ ОБМЕН. АССИМИЛЯЦИЯ
По типу ассимиляции все клетки делятся на две группы — автотрофные и гетеротрофные.
Автотрофные клетки способны к самостоятельному синтезу необходимых для них органических соединений за счет СО2, воды и энергии света (фотосинтез) или энергии, выделившейся при окислении неорганических соединений (хемосинтез). К автотрофам принадлежат все зеленые растения и некоторые бактерии.
Гетеротрофные клетки не способны синтезировать органические вещества из неорганических. Эти клетки для жизнедеятельности нуждаются в поступлении органических соединений: углеводов, белков, жиров. Гетеротрофами являются все животные, большая часть бактерий, грибы, некоторые высшие растения — сапрофиты и паразиты, а также клетки растений, не содержащие хлорофилл.
Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах.
Фотосинтез — синтез органических соединений, идущий за счет энергии солнечного излучения.
СВЕТОВАЯ ФАЗА: Во время световой фазы энергия солнечного света (или энергия искусственных источников света) улавливается зелеными растениями и превращается в химическую энергию, заключенную в органических веществах, богатых энергией (богатых энергией АТФ, НАДФ и т.д.). В последующем энергия этих богатых энергией соединений используется в клетке для процессов биосинтеза, которые могут происходить как на свету, так и в темноте.
Во время световой фазы фотосинтеза кванты света поглощаются электроном в молекуле хлорофилла. Молекулы хлорофилла могут поглощать солнечные лучи разной длинны
Первый этап (световой) происходит в тилакоидах; цель - образование аккумуляторов энергии: АТФ и НАДФ*Н (никатинамиддинуклеатидфосфат*Н)
Молекула хлорофилла 1 , поглощает квант света, при этом из неё выбивается электрон, он переходит на более высокий энергетический уровень, а затем подхватывается молекулами переносчиками. Электрон перескакивает с одного переносчика на другой, теряя энергию, эта энергия идет на фосфорилирование (на ,сственный отбор синтеза ДНК.месте электрона образуется дырка). В конце переносчиков электрон подхватывается НАДФ+. В результате один из электронов приобретает большой запас энергии и покидает хлорофилл. Эта энергия используется для синтеза АТФ и восстановления НАДФ, что приводит к образованию восстановленного никотинамидадениндинуклеотидфосфата НАДФ*Н.
Молекула хлорофилла 2 под воздействием кванта света теряет электрон (дырка). Электрон подхватывается молекулами переносчиками, теряет энергию (на синтез АТФ). Электрон идет в хлорофилл 1 (закрывает дырку). Вместе с тем солнечный свет приводит к фотолизу воды — разложению воды на ион водорода Н+ и ион гидроксила ОН- . Одновременно с этим ион гидроксила отдает свой электрон е. хлорофиллу, а возникающие радикалы ОН образуют воду и кислород Образующийся таким образом кислород выделяется зелеными растениями, что в течение многих сотен миллионов лет привело к созданию кислородной атмосферы Земли. В настоящее время зеленые растения продолжают непрерывно обогащать кислородом атмосферу нашей планеты.
Водород идет к НАДФ, а электрон в дырку 2.
Итог: синтез АТФ, НАДФ*Н и молекулярный кислород.
ТЕМНОВАЯ ФАЗА ФОТОСИНТЕЗА связана с использованием макроэргических веществ (АТФ, НАДФ • Н и некоторых других) для синтеза различных органических соединений (главным образом углеводов).
Цель: синтез органических веществ в строме (в полости хлоропластов )
Углекислый газ СО2 связывается с производными рибозы с образованием глюкозы:
6 СО2 +18АТФ+ 12НАДФ*Н= С6Н12О6 .
Значение фотосинтеза:
1. Насыщение атмосферы кислородом
2. Поглощение углекислого газа из атмосферы
3. Первичный источник органических веществ на планете – растения
4. Космическая роль зеленых растений: преобразуют солнечную энергию, в энергию химических связей органических веществ (доступную всем живым организмам)
Кроме фотосинтеза существует еще одна форма автотрофной ассимиляции — хемосинтез.
Хемосинтез. Способность синтезировать органические вещества из неорганических свойственна также некоторым видам бактерий, у которых нет хлорофилла. Способ, с помощью которого они мобилизуют энергию для синтетических реакций, принципиально иной, нежели у растительных клеток. Бактерии используют для синтеза энергию химических реакций. Они обладают специальным ферментным аппаратом, позволяющим им преобразовывать энергию химических реакций, в частности энергию окисления неорганических веществ, в химическую энергию синтезируемых органических соединений. Этот процесс называют хемосинтезом.
Из хемосинтетиков важны азотфиксирующие и нитрифицирующие бактерии. Источником энергии у одной группы этих бактерий служит реакция окисления аммиака в азотистую кислоту; другая группа использует энергию, выделяющуюся при окислении азотистой кислоты в азотную.
Хемосинтетиками являются железобактерии и серобактерии. Первые из них используют энергию, освобождающуюся при окислении двухвалентного железа в трехвалентное; вторые окисляют сероводород до серной кислоты. Роль хемосинтетиков очень велика, особенно азотфиксирующих бактерий. Они имеют важное значение для повышения урожайности, так как в результате жизнедеятельности этих бактерий азот, находящийся в воздухе, недоступный для усвоения растениями, превращается в аммиак ,который хорошо ими усваивается.
Автотрофы – организмы синтезирующие органические вещества из неорганических (Растения, некоторые бактерии)
Гетеротрофы – организмы потребляющие органические вещества в готовом виде (животные, грибы).
Дата добавления: 2015-08-08; просмотров: 1789;