Классификация мер
Для измерения информации вводятся два параметра: количество информации I и объем данных V. Эти параметры имеют разные выражения и интерпретацию в зависимости от рассматриваемой формы адекватности. Каждой форме адекватности соответствует своя мера количества информации и объема данных (рис. 2.1).
Объем данных Vд в сообщении измеряется количеством символов (разрядов) в этом сообщении. В различных системах счисления один разряд имеет различный вес и соответственно меняется единица измерения данных:
- в двоичной системе счисления единица измерения - бит (bit - binary digit - двоичный разряд);
- в десятичной системе счисления единица измерения - дит (десятичный разряд).
Рис. 2.1. Меры информации
Количество информации I на синтаксическом уровне невозможно определить без рассмотрения понятия неопределенности состояния системы (энтропии системы). Действительно, получение информации о какой-либо системе всегда связано с изменением степени неосведомленности получателя о состоянии этой системы. Рассмотрим это понятие.
Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе a. Мерой его неосведомленности о системе является функция H(a), которая в то же время служит и мерой неопределенности состояния системы.
После получения некоторого сообщения b получатель приобрел некоторую дополнительную информацию Ib(a), уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения b) неопределенность состояния системы стала Hb(a).
Тогда количество информации Ib(a) о системе, полученной в сообщении b, определится как
Ib(a) = H(a)-Hb(a),
т.е. количество информации измеряется изменением (уменьшением) неопределенности состояния системы.
Если конечная неопределенность системы Hb(a) обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации Ib(a) = H(a). Иными словами, энтропия системы H(a) может рассматриваться как мера недостающей информации.
Энтропия системы H(a), имеющая N возможных состояний, согласно формуле Шеннона, равна
,
где Pi - вероятность того, что система находится в i-м состоянии.
Для случая, когда все состояния системы равновероятны, т.е. их вероятности равны Pi = , ее энтропия определяется соотношением
.
Часто информация кодируется числовыми кодами в той или иной системе счисления, особенно это актуально при представлении информации в компьютере. Естественно, что одно и то же количество разрядов в разных системах счисления может передать разное число состояний отображаемого объекта, что можно представить в виде соотношения
N = mn,
где N - число всевозможных отображаемых состояний;
m - основание системы счисления (разнообразие символов, применяемых в алфавите);
n - число разрядов (символов) в сообщении.
Наиболее часто используются двоичные и десятичные логарифмы. Единицами измерения в этих случаях будут соответственно бит и дит.
Коэффициент (степень) информативности (лаконичность) сообщения определяется отношением количества информации к объему данных, т.е.
Y=1/Vд, причем 0<Y<1.
С увеличением Y уменьшаются объемы работы по преобразованию информации (данных в системе). Поэтому стремятся к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.
Дата добавления: 2015-08-08; просмотров: 745;