Скалярный потенциал магнитного поля

 

Для совокупности точек, где , , магнитное поле можно рассматривать как потенциальное, т.е. каждая точка этого поля имеет свой магнитный потенциал -

Для таких областей можно записать

Так как

При

Получим

Получили уравнение Лапласа для скалярного магнитного потенциала:

Оно справедливо только для областей, не занятых током.

Разность скалярных магнитных потенциалов между точками 1 и 2 называют падением магнитного напряжения между точками 1 и 2.

Падение магнитного напряжения между точками 1 и 2 по пути 1-3-2 равно падению магнитного напряжения между точками 1 и 2 по пути 1-4-2 в том случае, когда эти пути (1-3-2 и 1-4-2) образуют замкнутый контур, ток внутри которого равен нулю. Если же эти пути образуют замкнутый контур, ток внутри которого не равен нулю (например контур 1-3-2-5-1), то падения магнитного напряжения по пути 1-5-2 и по пути 1-3-2 не будут равны и будут отличаться на значение тока, охваченного контуром. Т.е. по закону полного тока можно записать:

 

 

 

Для того, чтобы разность магнитных потенциалов между двумя точками не зависела от пути, наложим запрет на прохождение пути через контур с током. При прохождении контура с током магнитный потенциал будет меняться скачком на значение тока в контуре.

 

Пример 1:Определить разность магнитных потенциалов между точками А и В.

 

Пример 2: Определить разность магнитных потенциалов в случае действия нескольких токов.








Дата добавления: 2015-07-30; просмотров: 2033;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.