Билет № 10. Современные средства естественно-научных исследований.
Специфика современных экспериментальных и теоретических исследований. На всех этапах эксперимента естествоиспытатель руководствуется в той или иной форме теоретическими знаниями. В последнем столетии в силу ряда объективных причин основной профессиональной деятельностью некоторых ученых стала исключительно теоретическая работа. Одним из первых ученых, который не проводил никаких экспериментов, был немецкий физик М. Планк.
Произошло, таким образом, деление естествоиспытателей на профессиональных теоретиков и экспериментаторов. Во многих отраслях естествознания возникли экспериментальные и теоретические направления и в соответствии с ними появились специализированные лаборатории. Созданы научные подразделения и даже институты теоретического профиля, например Институт теоретической физики. Такой процесс активизировался во второй половине XX в. В прежние времена не только Ньютон и Гюйгенс, но и такие выдающиеся теоретики, как Максвелл, обычно сами экспериментально проверяли свои теоретические выводы и утверждения.
В последние же десятилетия только в исключительных случаях теоретик проводит экспериментальную работу, чтобы подтвердить свои теоретические выводы. Одна из объективных причин профессиональной обособленности экспериментаторов и теоретиков заключается в том, что современные технические средства довольно сложны. Экспериментальная работа требует концентрации больших усилий — она не под силу одному ученому и выполняется в большинстве случаев целым коллективом научных работников. Например, в проведении эксперимента с применением ускорителя, реактора и т. п. принимает участие относительно большая группа исследователей. В подобных случаях даже при большом желании теоретик не в состоянии проверить на практике свои теоретические результаты.
Еще в 60-е годы XX в., когда практически все отрасли естествознания находились на подъеме, академик П.Л. Капица с тревогой говорил о разрыве между теорией и экспериментом, между теорией и практикой, отмечая отрыв теоретической науки от жизни, с одной стороны, а с другой — недостаточно высокое качество экспериментальных работ, что нарушает естественное гармоническое развитие естествознания, возможное только при условии, что теория опирается на современную экспериментальную базу, включающую всевозможное оборудование, большой набор высокочувствительных приборов, специальных материалов и т.п. Темпы развития естествознания определяются в основном степенью совершенства такой базы.
Отрыв теории от эксперимента, практики наносит громадный ущерб прежде всего самой теории и, следовательно, науке в целом. Он характерен не только для естествознания, но и для философии, связанной с проблемами естествознания. Ярким примером может служить отношение некоторых «философов» к кибернетике в конце 40-х — начале 50-х годов XX в., когда в отечественных философских словарях кибернетика называлась реакционной лженаукой. Если бы ученые руководствовались таким определением, то вряд ли бы стало возможным освоение космоса и создание современных наукоемких технологий, поскольку все сложные многофункциональные процессы вне зависимости от их области применения управляются кибернетическими системами.
Работа крупных ученых-естествоиспытателей, внесших большой вклад в развитие современного естествознания, несомненно проходила в тесной взаимосвязи теории и эксперимента. Поэтому для развития естествознания на здоровой почве всякое теоретическое обобщение должно непременно проверяться экспериментом. Только гармоничное развитие эксперимента и теории способно поднять на качественно новый уровень все отрасли естествознания.
Современные методы и технические средства эксперимента. Экспериментальные методы и технические средства современных естественно-научных исследований достигли высокой степени совершенства.
Многие из них основаны на физических принципах. Однако их практическое применение выходит далеко за рамки физики: они широко применяются в химии, биологии и многих смежных естественно-научных отраслях. С появлением лазерной техники, компьютеров, спектрометров открылась возможность экспериментального исследования неизвестных ранее явлений природы, свойств материальных объектов, быстропротекающих физических, химических и биологических процессов.
Лазерная техника. Для экспериментального изучения многих естественных процессов весьма важны три направления развития лазерной техники:
1) разработка лазеров с перестраиваемой длиной волны излучения;
2) создание ультрафиолетовых лазеров;
3) сокращение длительности импульса лазерного излучения до аттосекунд (1 ас = 10-18с).
Чем шире спектр излучения лазера, тем он ценнее. Современные лазеры с перестраиваемой длиной волны охватывают спектр — от ближней ультрафиолетовой области до инфракрасной, включая видимый диапазон. Разработаны лазеры, длина волны излучения которых составляет менее 300 нм, т.е. соответствует ультрафиолетовой области. К ним относится, например, криптон-фторидный лазер.
Минимальная длительность импульсов современных лазеров равна фемтосекундам (1 фс =10-18с).
Разрабатываются лазеры с длительностью импульсов излучения, приближающейся к аттосекундам. Такие лазеры, несомненно, позволят расшифровать механизм физических, химических и биологических процессов, протекающих с чрезвычайно высокой скоростью.
Сравнительно недавно — в конце 80-х годов XX в. — сотрудник Калифорнийского технологического института, американец египетского происхождения Ахмед Зивэйл исследовал сверхбыструю реакцию распада молекул цианида йода, инициируемую импульсами лазерного излучения фемтосекундной длительности. За эту работу он удостоен Нобелевской премии по химии 1999 г.
Трудно перечислить все области применения лазеров для исследования многообразных химических процессов. Назовем лишь некоторые из них: в фотохимии лазер помогает изучить процесс фотосинтеза и тем самым найти способ более эффективного использования солнечной энергии; в химической кинетике при анализе различных процессов длительностью 10-12—10-18с с помощью лазеров разделяются изотопы, например, производится очистка изотопов урана и плутония; лазерные приборы служат анализаторами химического состава воздуха; в биологии они позволяют исследовать живые организмы на клеточном уровне и т.д.
Возможности естественно-научных исследований расширяют лазеры на свободных электронах. Принцип их действия основан на том, что в пучке электронов, движущихся со скоростью, близкой к скорости света, в периодически изменяющемся магнитном поле в направлении движения электронов возникает излучение света. Для них характерна важная отличительная особенность — перестройка длины волны при большой мощности в широком диапазоне излучения.
Синхротронные источники излучения. Синхротроны применяются не только в физике высоких энергий для исследования механизма взаимодействия элементарных частиц, но и для генерации мощного синхротронного излучения с перестраиваемой длиной волны в коротковолновой ультрафиолетовой и рентгеновской областях спектра. С помощью синхротронного излучения можно исследовать структуру твердого тела, определить расстояние между атомами, изучить строение молекул органических соединений и т.п.
Методы расшифровки сложных структур. Для идентификации, анализа и синтеза сложных химических соединений необходимо определить состав и структуру их молекул. Современные экспериментальные методы ядерного магнитного резонанса, оптической спектроскопии, масс-спектроскопии, рентгеноструктурного анализа, нейтронографии и т.п. позволяют исследовать состав и структуру необычайно сложных молекул органических и неорганических веществ.
Метод ядерного магнитного резонанса (ЯМР) основан на анализе взаимодействия магнитного момента атомных ядер с внешним магнитным полем. Он применяется в разных отраслях естествознания и, в особенности, в химии синтеза полимеров, и т.п. С помощью метода ЯМР можно определить, например, структуру сегментов ДНК. Основанный на ЯМР современный томограф позволяет наблюдать картину распределения химических неоднородностей таких крупных объектов, как организм человека, что весьма важно при диагностике ряда заболеваний, в том числе и злокачественных опухолей.
Оптическая спектроскопия обеспечивает анализ спектра излучения вещества в различных агрегатных состояниях. Спектральный анализ — это физический метод качественного и количественного определения состава вещества по его оптическому спектру излучения. В качественном спектральном анализе для интерпретации спектра используются таблицы и атласы, составленные для различных химических элементов и соединений. Состав исследуемого вещества при количественном спектральном анализе оценивается по относительной или абсолютной интенсивности линий или полос спектра. С применением лазерного источника излучения и персонального компьютера возможности оптического спектрометра значительно расширяются: такой спектрометр способен обнаружить отдельную молекулу или атом любого вещества. Лазерный спектроскопический метод позволяет регистрировать, например, загрязнение воздуха на расстоянии около двух километров.
Масс-спектроскопия основана на превращении исследуемого вещества в ионизированный газ, ионы которого ускоряются электрическим полем. Масса частиц определяется по радиусу кривизны их траектории и времени пролета. Масс-спектрометрия отличается высокой чувствительностью. С ее помощью можно обнаружить, например, три атома изотопа 14С среди 1016 атомов 12С. Они широко применяются для исследования структуры химических соединений, определения изотопного состава и строения молекул в разных областях: в производстве интегральных схем, металлургии, нефтяной, фармацевтической, атомной промышленности и т.п. Для идентификации методом масс-спектроскопии достаточно всего 10-10 г вещества. Так, в плазме крови масс-спектрометр регистрирует активное вещество марихуаны с концентрацией 0,1 мг на килограмм массы тела человека. В сочетании с газовым хроматографом возможности масс-спектроскопии существенно расширились.
Рентгеноструктурный анализ, основанный на дифракции рентгеновских лучей, позволяет определить довольно сложные молекулярные структуры неорганических и органических веществ, что способствует синтезу, например, искусственных ферментов, гормонов роста и т.д.
Нейтронография обладает очень высокой разрешающей способностью. Она основана на дифракции пучка нейтронов, формирующихся в ядерных установках, что несколько ограничивает ее применение. Отличительная особенность нейтронографии — высокая точность определения расстояния между атомами. Она применяется при определении структуры молекул сверхпроводников, живых организмов и т.п.
Дата добавления: 2015-07-30; просмотров: 2212;