Дифракция световых волн
Дифракцией называется огибание волной препятствий. Дифракция выражена достаточно сильно, если длина волны соизмерима с размерами препятствия. Возникновение дифракции можно объяснить с помощью принципа Гюйгенса: каждая точка, до которой доходит волновое движение, служит центром вторичных волн; огибающая этих волн дает положение фронта волны в следующий момент. Для количественной оценки результатов дифракции и нахождения амплитуды результирующей волны в любой точке пространства Френель дополнил принцип Гюйгенса представлением о когерентности вторичных волн и их интерференции.
Различают: 1) дифракцию плоской волны – дифракцию Фраунгофера и 2) дифракцию сферической волны – дифракцию Френеля
Расчеты с использованием принципа Гюйгенса – Френеля – чрезвычайно трудная задача. Поэтому для качественной оценки результатов дифракции Френель предложил разбивать фронт волны не на бесконечное множество точечных источников, а на конечное число зон. Зонами Френеля называются участки фронта волны, построенные таким образом, что расстояние от краев каждой зоны до точки наблюдения отличаются на l/2.
|
Построение зон для сферической волны, испущенной источником S, показано на рис. 9. Колебания, приходящие в точку наблюдения P от аналогичных точек двух соседних зон, будут находиться в противофазе. Поэтому и результирующие колебания, создаваемые каждой из зон в целом, будут для соседних зон отличаться по фазе на p.
Радиус внешней границы k-ой зоны Френеля в этом случае
, (52)
где а – расстояние от источника света до фронта волны, b – расстояние от точки наблюдения до вершины фронта волны О.
Для плоской волны радиус находится как
. (53)
|
Для качественной оценки результата дифракции на малом круглом отверстии достаточно найти количество зон Френеля, попавших в это отверстие. Если количество зон четное, то в точке Р будет минимум, если нечетное – максимум.
Аналогично оценивается дифракция Фраунгофера на узкой щели (рис. 10).
Открытая часть фронта волны, дошедшей до щели, разбивается на параллельные краям щели зоны Френеля шириной , где j – угол дифракции. Таких зон на ширине щели укладывается . Если N четное, то в точке Р – минимум, если N нечетное, то в точке P – максимум. Тогда
(54)
|
|
|
Расстояние d между серединами соседних щелей называется постоянной или периодом решетки. При этом в направлениях, для которых разность хода волн от соседних щелей равна целому числу длин волн, будут наблюдаться максимумы интенсивности, называемые главными. Таким образом, условие главных максимумов имеет вид
dsinj = 2kl/2, k = 0, 1, 2... (55)
При этом интенсивность главных максимумов Imax пропорциональна интенсивности Ij , создаваемой в направлении j одной щелью. Imax = N2I , (56),
где N – общее число щелей решетки.
Дифракционная решетка служит спектральным прибором, разрешающая способность которого (57)
где Dl – наименьшая разность длин волн двух близких спектральных линий с длинами волн l и l+Dl, при которых они еще воспринимаются раздельно (разрешаются).
Разрешающая способность дифракционной решетки может быть найдена по формуле
R = kN, (58)
где k – порядок дифракционного спектра, N – общее число щелей решетки.
1.5. Поляризация световых волн
В естественном свете колебания различных направлений быстро и беспорядочно сменяют друг друга. Свет, в котором направления колебаний упорядочены каким-либо образом, называют поляризованным. Обычно ограничиваются рассмотрением плоскополяризованного света, то есть такого, в котором колебания светового вектора происходят только в одной плоскости.
Плоскополяризованный свет получают из естественного с помощью приборов – поляризаторов. Эти приборы пропускают только колебания, параллельные плоскости, называемой плоскостью поляризатора. Если через поляризатор пропустить естественный свет с интенсивностью Iест , то интенсивность прошедшего поляризованного света
|
I = 0,5Iест . (59)
Если на поляризатор падает уже плоскополяризованный свет с амплитудой А0 и интенсивностью I0 (рис. 12), то сквозь прибор пройдет составляющая колебания с амплитудой А = А0 cos j, где j – угол между плоскостью колебаний падающего света и плоскостью поляризатора. Следовательно, интенсивность прошедшего света I определяется выражением
I = I0 cos2j (60)
Соотношение (60) носит название закона Малюса.
Действие поляризаторов разных типов основано либо на явлении поляризации света при отражении его от диэлектрика, либо на поляризации при двойном лучепреломлении, которое наблюдается при прохождении света через анизотропные вещества (кристаллы).
|
В первом случае имеет место закон Брюстера, который гласит, что отраженный от диэлектрика свет будет полностью поляризован, если тангенс угла падения aБ равен относительному показателю преломления сред n21 = n2/n1 (рис. 13):
tgaБ = n21 . (61)
ТЕМА № 2
Дата добавления: 2015-07-18; просмотров: 968;