А). Механізм альфа – розпаду

Явище альфа – радіоактивності було відкрите при вивченні радіоактивності природних елементів. Природні a - випромінювачі розміщуються в таблиці Менделєєва, починаючи з номера Z³82 (Z=82 має свинець). Оскільки в a - частинці питома енергія зв’язку виявляється більшою, ніж у важких ядрах, a - розпад енергетично є завжди можливим. Наприклад, нуклід урану 238U випромінює a - частинки з періодом піврозпаду 4,5·109 років.

Самочинно відбувається ядерна реакція

 

МеВ. (3.2.2.1)

Різниця мас і продуктів розпаду складає 4,2 МеВ. (Маса материнського ядра перевищує суму мас продуктів розпаду на DМ = 0.0045 а.о.м.).

Правило зміщення для a- розпаду записують так:

 

, (3.2.2.2)

 

де - материнське ядро; - дочірнє ядро; частинка; g-гамма - квант, який звільняється дочірнім ядром при переході у менш збуджений або нормальний стан.

Процес a- розпаду має дві особливості, які були відкриті експериментально.

Між пробігом a-частинки, який може бути мірою її початкової енергії і сталою радіоактивного розпаду l є проста залежність, емпірично встановлена Гейгером і Неттолом ще у 1911 році і відома під назвою закону Гейгера-Неттола:

(3.2.2.3)

де А і В – сталі величини, причому стала В є однаковою для всіх радіоактивних елементів; А – є сталою лише в межах певного радіоактивного ряду.

Із закону Гейгера – Неттола випливає, що чим менш стабільні ядра, тим більша енергія у a-частинок, які при цьому випромінюються.

Наступною особливістю a- розпаду є досить низька енергія a- частинок у момент вилітання із ядра, яка змінюється в межах 4–9 МеВ. Насправді a- частинки у момент вилітання із ядра повинні мати значно більшу енергію, рівну висоті потенціального бар’єра. В реакції потенціальна енергія відштовхування a- частинки на межі ядра торію складає біля 30 МеВ. Відповідно a- частинка після подолання такого бар’єра повинна прискоритися до 30 МеВ. Експериментально ж виявлені a- частинки з енергією 4.2 МеВ.

Чому енергія a- частинок порівняно невисока, та як можна пояснити закон Гейгера-Неттола? Відповідь на ці запитання дає квантова механіка.

Перед початком a- розпаду в багатьох ядрах уже існує по одній a-частинці. Енергія такої частинки . Якби не було потенціального бар’єра, a- частинка вилітала б із ядра з енергією (рис. 3.2.1).

 

На рис. 3.2.1 V0глибина потенціальної ями; - енергія a- частинок після вилітання із ядра.

Таке враження, що, залишаючи ядра, a- частинки не помічають існування потенціального бар’єра.

Згідно з законами квантової механіки a- частинки проявляють хвильові властивості. При попаданні на стінку потенціального бар’єра вони відбиваються від неї як хвилі. Але не всі a- частинки відбиваються від стінки. Частина із них проникає крізь стінку і залишає ядро з енергією Еa . Ефект проникнення a- частинок крізь потенціальний бар’єр при енергіях значно нижчих його висоти називається тунельним ефектом.

Імовірність проникнення a- частинок крізь потенціальний бар’єр визначається його прозорістю Д. При цьому стала радіоактивного розпаду l, яка визначає імовірність розпаду за одиницю часу, дорівнює добутку “ прозорості “ бар’єра на число зіткнень n a- частинки з внутрішніми стінками бар’єра, тобто

 

l = Д n, (3.2.2.3)

 

, (3.2.2.4)

 

де ma - маса частинки, r – ширина потенціального бар’єра; n – число ударів a- частинки об стінку потенціального бар’єра; Д – прозорість бар’єра у цьому місці.

Мала прозорість Д бар’єра для проникнення крізь нього a- частинки пояснює малу імовірність a- перетворення (мала стала розпаду l) і великий період піврозпаду. Це і є пояснення закону Гейгера – Неттола.

При a- розпаді дочірнє ядро, як правило, перебуває у збудженому стані і енергетично є нестабільним. Перехід з такого збудженого стану в нормальний стан супроводжується випромінюванням g-квантів. Середній час збудженого стану не перевищує 10-13 с.

Дискретний спектр a- випромінювання характеризує енергетичну структуру ядра атома. Пояснити дискретний спектр a- випромінювання можна, виходячи лише із оболонкової моделі будови атомного ядра.

 

б). Закономірності b- розпаду

Бета-розпад ядер радіоактивних елементів почали вивчати незабаром після відкриття радіоактивності. Відомі три види b-розпаду. Серед них b--розпад, b+- розпад і К-захват. Експериментально було встановлено, що b- випромінювання складається з електронів або позитронів і що ці види випромінювання супроводжуються випусканням нейтрино або антинейтрино. Нейтрино – це елементарна частинка з нульовим електричним зарядом і масою спокою рівною нулю. Нейтрино має півцілий спін подібно до електрона. Аналогічні характеристики має антинейтрино.

Правила зміщення для різних видів b- розпаду можна записати так:

а). електронний b- розпад

(3.2.2.5)

б). позитронний b- розпад

 

(3.2.2.6)

 

в). К-захват, або захват ядром електрона з К-оболонки

 

(3.2.2.7)

 

де материнське ядро; дочірнє ядро; електрон; позитрон; антинейтрино; нейтрино.

Для пояснення різних видів β-радіоактивності прийшлось подолати значні труднощі. Перш за все слід було обґрунтувати походження електронів в процесі b-розпаду. Протонно-нейтронна будова ядра усуває вилітання з ядра електронів оскільки їх там немає.

Сучасна теорія b- розпаду ґрунтується на теорії, розробленій Фермі в 1931 р. Фермі у цій теорії стверджує, що протон або нейтрон можуть взаємно перетворюватись в пару частинок позитрон-нейтрино або електрон-антинейтрино. Така пара частинок породжується в ядрі дякуючи слабким взаємодіям подібно тому, як випромінюється фотон за рахунок електромагнетних взаємодій. При цьому слід мати на увазі, що до процесу b-розпаду всередині ядра немає ні електрона ні нейтрино.

Найпростішим прикладом b- розпаду є перетворення вільного нейтрона в протон з періодом піврозпаду 12 хв.:

 

(3.2.2.8)

 

де антинейтрино; електрон.

Такі перетворення нейтронів в протони були виявлені ще у 1950 році при дослідженні потужних нейтронних пучків атомних реакторів.

Процес перетворення нейтрона в протон в ядрах атомів супроводжується виконанням законів збереження електричних зарядів, імпульсу, масових чисел, лептонних зарядів та ін. Крім того, таке перетворення енергетично можливе, тому що маса нейтрона в спокої перевищує масу атома водню, тобто протона і електрона разом узятих. Різниця в масах нейтрона й протона з електроном дорівнює 0.782 МєВ. За рахунок цієї енергії може відбуватись самочинне перетворення нейтрона в протон.

При позитронному розпаді, тобто процесі перетворення одного із протонів ядра в нейтрон, недостаток енергії для такого перетворення доповнюється ядром

(3.2.2.9)

 

де нейтрино, відрізняється від антинейтрино лише знаком лептонного заряду (для нейтрино –1, а для антинейтрино +1).

Випадків перетворення вільного протона в нейтрон з випромінюванням нейтрино й позитрона поки що не спостерігалось. Такі перетворення заборонені законом збереження маси ( баріонного заряду ).

Третій вид b- радіоактивності – електронне захоплення було відкрите ще у 1937 році американськими фізиками. Цей вид радіоактивності полягає в тому, що ядром можуть бути захоплені електрони з електронної оболонки власного атома. При цьому це можуть бути K-, L-, M- електрони. Те, що такий процес можливий, пояснюється в квантовій механіці. З квантової точки зору електронних орбіт в атомах не існує через хвильові властивості електронів. Перебування електронів на оболонках має імовірнісний характер. Перебування електронів біля ядра і навіть у ядрі законами квантової механіки не забороняється. Тому в тих випадках, коли материнське ядро дещо перенасичене протонами, можливий електронний захват згідно з схемою:

 

(3.2.2.10)

 

Електронний захват завжди супроводжується рентгенівським випромінюванням.

Енергетичний спектр b- випромінювання є завжди суцільним з різкою межею для деякої максимальної енергії Еmax (рис.3.2.2.).

Гіпотеза про те, що b- частинки народжуються лише певних енергій, а потім частину її втрачають при вилітанні з ядер, не підтверджується експериментально. Все пояснюється дуже просто: це перш за все процес народження двох частинок – електрона й антинейтрино або позитрона й нейтрино. У випадку, коли електрон має енергію Еmax, антинейтрино має енергію рівну нулю. Між двома частинками в процесі радіоактивного розпаду енергія розподіляється довільно.

 








Дата добавления: 2015-08-26; просмотров: 1381;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.