Выбор сталей для строительных конструкций

Выбор стали зависит от следующих факторов, влияющих на работу материала:

- температуры среды, в которой монтируется и эксплуатируется конструкция; этот фактор учитывает повышенную опасность хруп­кого разрушения при пониженных температурах;

- характера нагружения, определяющего особенность работы материала и конструкций при динамической, вибрационной и пере­менной нагрузках;

- вида напряженного состояния (одноосное сжатие или растяже­ние, плоское или объемное напряженное состояние) и уровня воз­никающих напряжений (сильно или слабо нагруженные элементы);

- способа соединения элементов, определяющего уровень собст­венных напряжений, степень концентрации напряжений и свойства материала в зоне соединения;

- толщины проката, применяемого в элементах. Этот фактор учитывает изменение свойств стали с увеличением толщины.

При выборе стали необходимо учитывать группу конструкций.

Кпервой группе относят сварные конструкции, работающие в особо тяжелых условиях или подвергающиеся непосредственному воздействию динамических, вибрационных или подвижных нагрузок (например, подкрановые балки, балки рабочих площадок или эле­менты эстакад, непосредственно воспринимающих нагрузку от под­вижных составов, фасонки ферм и т.д.). Напряженное состояние таких конструкций характеризуется высоким уров

нем и большой частотой нагружения.

Конструкции первой группы работают в наиболее сложных усло­виях, способствующих возможности их хрупкого или усталостного разрушения, поэтому к свойствам сталей для этих конструкций предъявляются наиболее высокие требования.

Ковторой группе относят сварные конструкции, работающие на статическую нагрузку при воздействии одноосного и однозначного двухосного поля растягивающих напряжений (например, фермы, ригели рам, балки перекрытий и другие растянутые, растянуто-изгибаемые и изгибаемые элементы), а также конструкции второй группы при отсутствии сварных соединений.

Общим для конструкций этой группы является повышенная опасность хрупкого разрушения, связанная с наличием поля растяги­вающих напряжений. Вероятность усталостного разрушения здесь меньше, чем для конструкций первой группы.

К третьей группе относят сварные конструкции, работающие при преимущественном воздействии сжимающих напряжений (например, колонны, стойки, опоры под оборудование и другие сжа­тые и сжато-изгибаемые элементы), а также конструкции второй группы при отсутствии сварных соединений.

Вчетвертую группу включены вспомогательные конструкции и элементы (связи, элементы фахверка, лестницы, ограждения и т.п.), а также конструкции третьей группы при отсутствии сварных соеди­нений.

Если для конструкций третьей и четвертой групп достаточно ог­раничиться требованиями к прочности при статических нагрузках, то для конструкций первой и второй групп важным является оценка сопротивления стали динамическим воздействиям и хрупкому раз­рушению.

В материалах для сварных конструкций обязательно следует оце­нивать свариваемость. Требования к элементам конструкций, не имеющим сварных соединений, могут быть снижены, так как отсут­ствие .полей сварочных напряжений, более низкая концентрация на­пряжений и другие факторы улучшают их работу.

В пределах каждой группы конструкций в зависимости от темпе­ратуры эксплуатации к сталям предъявляют требования по ударной вязкости при различных температурах.

В СНиП II-23-81 содержится перечень марок сталей в зависимости от группы конструкций и климатического района строительства.

 

8.9. Влияние температуры на стали.

Механические свойства стали при нагревании ее до температуры t = 200...250 °С практически не меняются (рис.2.2.2).

 

1 – модуль упругости; 2 – временное сопротивление; 3 – предел текучести

Рис.2.2.2. Механические свойства низкоуглеродистой стали

при изменении температуры

 

При температуре 250...300°С проч­ность стали не­сколько повышает­ся, пластичность снижается. Сталь становится более хрупкой. При этой температуре не следует сталь дефор­мировать или подвергать удар­ным воздействиям.

При нагревании выше 400°С резко падает предел текуче­сти и временное сопротивление, а при t = 600...650°С наступает температурная пластичность и сталь теряет свою несущую способ­ность.

При отрицательных температурах прочность стали возрастает, ударная вязкость падает и сталь становится более хрупкой (рис. 2.2.2).

Переход от вязкого разрушения к хрупкому проис­ходит, как правило, скачкообразно, в узком температурном диапазо­не, называемом порогом хладноломкости. Обычно в качестве порога хладноломкости принимают температуру, при которой ударная вязкость становится меньше оп­ределенного значения. Температуру, при которой ударная вязкость снижается до этого установленного значения, принимают за порог хладнолом­кости или критическую температуру перехода стали в хрупкое со­стояние. Данные о критических температурах хрупкости позво­ляют установить температурный интервал, при котором рекоменду­ется использовать в конструкциях ту или иную сталь.

8.10.Сортамент: общая характеристика сортамента

 

В строительных конструкциях применяют в основном прокатную сталь, поставляемую с металлургических заводов в виде профилей различной формы поперечного сечения. Для стальных конструкций используют листовую и профильную сталь. Профильную сталь под­разделяют на сортовую (круг, квадрат, полоса, уголки) и фасонную (двутавры, швеллеры и другие фасонные профили). Кроме того, ши­роко применяют вторичные профили: сварные, получаемые сваркой полос или листов, и гнутые, образованные холодной гибкой полос и листов.

Современный сортамент разработан в результате многолетнего развития металлических конструкций и теоретических исследований по выявлению рациональных типов профилей и частоты их града­ции.

Наиболее дешевы прокатные профили. Они непосредственно с металлургического завода идут на изготовление металлоконструкций. Для образования сварных и гнутых профилей требуется дополнительная операция - изготовление профиля из прокатного листа.

Сталь листовая.Листовую сталь широко применяют в строительстве. Ее классифицируют следующим образом.

Сталь толстолистовая (ГОСТ 19903—74). Сортамент этой стали включает листы толщиной от 4 до 160 мм, шириной от 600 до 3800 мм. Обычно применяемая ширина не превышает 2400 мм. Листовая горячекатаная сталь поставляется в листах длиной 6...12 м и толщиной до 160 мм или в рулонах толщиной от 1,2 до 12 мм и шириной от 500 до 2200 мм. В строительных конструкциях рекомендуется применять следующие толщины листовой стали: от 4 до 6 мм — через 1 мм, от 6 до 22 мм - через 2 мм и далее 25, 28, 30, 32, 36, 40, 50, 60, 80, 100 мм. Толстолистовую сталь используют в листовых конструкциях и сплошностенчатых элементах стержневых конструкций (балках, колоннах).

Сталь тонколистовая толщиной до 4 мм прокатывается холодным и горячим способами. Холоднокатаная сталь (ГОСТ 19904-74 с изм.) значительно дороже горячекатаной (ГОСТ 19903-74 с изм.). Тонкую листовую сталь применяют при изготовлении гнутых и штампованных тонкостенных профилей, для кровельных покрытий и т.п. Из холоднокатаной, оцинкованной, рулонной стали изготовляют профилированные настилы.

Сталь широкополосная универсальная (ГОСТ 8200-70) благодаря прокату между четырьмя валками имеет ровные края. Толщина такой стали от 6 до 60 мм, ширина от 200 до 1050 мм и длина от 5 до 12 м. Применение универсальной стали уменьшает отходы и снижает трудоемкость изготовления конструкций, так как не требует резки и выравнивания кромок строжкой.

Сталь полосовая (ГОСТ 103—76 с изм.) имеет толщину от 4 до 60 мм при ширине до 200 мм. Ее применяют для конструктивных деталей типа диафрагм и ребер жесткости, а также для изготовления гнутых профилей.

Рифленая сталь (ГОСТ 8568—77) толщиной от 2,5 до 8 мм с ромбическими или чечевицеобразными выступами, препятствующими скольжению при ходьбе, используется для настилов площадок.

Для площадок, где возможно скопление пыли, применяют просечно-вытяжную сталь (ГОСТ 8706-78) толщиной от 4,5 до 6
мм, получаемую холодной вытяжкой листа с предварительно
нанесенными разрезами.

Уголковые профили.Уголковые профили прокатывают в виде равнополочных (ГОСТ 8509-93) и неравнополочных (ГОСТ 8510-86) уголков. Сортамент уголков весьма обширен: от очень малых профилей с площадью сечения 1...1.5 см2 до мощных профилей с площадью се­чения 140 см2. Полки уголков имеют параллельные грани, что об­легчает конструирование. Тонкие уголки рациональны в элементах, работающих на осевое сжатие. Чем тоньше полки уголков, тем больше (при одинаковой площади сечения) радиус инерции i, от которого зависит несущая способность элемента.

Для растянутых элементов толщина уголков с точки зрения их несущей способности не имеет значения, но и в этом случае тонкие уголки предпочтительнее, поскольку более развитое сечение имеет большую жесткость и удобнее при транспортировке и монтаже. Ес­ли же полки уголков подвергаются изгибу, например при опирании на них плит перекрытий, то применяют толстые уголки. Уголки на­шли широкое применение в решетчатых конструкциях, прежде всего в фермах. Сечения элементов решетчатых конструкций компо­нуют часто из двух или четырех уголков.

Швеллеры. Геометрические характеристики сечения швеллеров определяют по номерам, которые соответствуют высоте стенки швеллера (в см). Сортамент (ГОСТ 8240-93) включает швел­леры от №5 до №40 с уклоном внутренних граней полок. Уклон внутренних граней полок затрудняет конструирование. В ГОСТ вхо­дят и швеллеры с параллельными гранями полок с буквой П в обо­значении, например 22П, сечения которых имеют лучшие расчет­ные характеристики и более конструктивны, так как упрощают бол­товые крепления к полкам.

Швеллеры используют в элементах, работающих на изгиб, на­пример в прогонах покрытий зданий. В конструкциях, работающих на осевые силы, швеллеры применяют в основном в виде составных сечений, соединенных планками или решеткой, например в колон­нах и поясах тяжелых ферм. Возможно применение швеллеров для коробчатых сечений со сваркой полок сплошными швами. Использование прерывистых шпоночных швов весьма про­блематично, поскольку помимо повышенной концентрации напря­жений в концах шпонок в таком сечении внутренняя полость не герметизирована, что может способствовать развитию коррозии.

Двутавры. Двутавр - наиболее рациональный профиль для элементов, рабо­тающих на изгиб.

В зависимости от геометрических параметров металлургическими заводами выпускаются несколько типов двутавров, которым соответ­ствуют определенные области применения.

Балки двутавровые обыкновенные (ГОСТ 8239-89), так же как и швеллеры, имеют уклон внутренних граней полок и обознача­ются номером, соответствующим их высоте в см. В сортамент входят профили от №10 до №60. Стенки круп­ных двутавров имеют толщину, составляющую 1/55 высоты дву­тавра. Чем тоньше стенка, тем выгоднее сечение балки при ра­боте ее на изгиб. Однако по условиям технологии прокатки у большинства двутавров стенки получаются значительно толще, чем это требуется по условию их устойчивости. Благодаря со­средоточению материала в полках двутавры имеют большую же­сткость относительно оси х,но небольшая ширина полок делает их недостаточно устойчивыми относительно оси у. Обыкновен­ные двутавры применяют в элементах, изгибаемых в плоскости стенки, а также в ветвях решетчатых колонн и различных опор.

Для обеспечения устойчивости относительно оси у эти двутавры должны иметь промежуточные закрепления.

Балки двутавровые широкополочные (ГОСТ 26020—83, СТО АСЧМ 20—93) имеют параллельные грани полок. Широкополочные двутавры прокатывают трех типов: нор­мальные двутавры (Б), широкополочные двутавры (Ш), колон­ные двутавры (К). Высота балочных профилей (Б) и (Ш) дос­тигает 1000 мм при отношении ширины полок к высоте от b/h=0,75(при малых высотах) до b/h=0,3(при больших высо­тах). Колонные профили (К) имеют отношение ширины полок к высоте, близкое к единице, что придает им устойчивость от­носительно оси у. Благодаря большей ширине полок широко­полочные двутавры имеют большую жесткость относительно оси у и могут применяться в конструкциях без дополнительных закреплений.

Конструктивные преимущества (параллельность граней полок и мощность сечений) позволяют применять широкополочные двутав­ры в виде самостоятельного элемента (балки, колонны, стержни тя­желых ферм), не требующего почти никакой обработки, что снижает трудоемкость изготовления конструкций в 2...3 раза.

Из широкополочных двутавров путем разрезки полки в продоль­ном направлении получают тавровые профили, удобные для применения в решетчатых конструкциях. По мере рас­ширения производства широкополочных двутавров применение обыкновенных двутавров сокращается.

Использование автоматической сварки позволяет изготовлять тонкостенные двутавры из листового проката с более выгодным рас­пределением материала по сечению. Сварные дву­тавры имеют свой сортамент.

Трубы. В трубах материал распределен на максимальном удалении от центра тяжести, поэтому из всех типов сечения трубчатое имеет наибольший удельный радиус инерции. Наиболее рацио­нально применение труб в элементах, работающих на осевое сжатие. Расход стали при этом снижается на 20...25 %, что покрывает повышение стоимости самих труб. Высокая коррозионная стойкость труб делают сооружения, выполненные из них, более долговечными.

Для строительных металлических конструкций применяют трубы круглого, квадратного и прямоугольного сечений.

Профилированный настил. Одним из видов гнутых профилей является профилированный настил, изготовляемый на специальных станах. Такой настил нашел широкое применение для площадок кровель и стеновых ограждений.

Профилированные листы различают по высоте и форме гофра. Для изготовления профилированного настила применяют листы толщиной от 0,6 до 1 мм. В зависимости от требуемой жесткости высота волны А составляет от 18 до 120 мм. Для обес­печения местной устойчивости полок и стенок профнастила устраи­вают продольные гофры.

Для обеспечения коррозионной стойкости профнастил изготов­ляют из оцинкованной стали. Профилированный настил поставляют по ГОСТ 24045-94 и техническим условиям отдельных заводов. При необходимости настил могут поставлять по индивидуальным зака­зам.

Наиболее распространенные типы настила для покрытий Н57-750-0,7 и Н75-750-0,8. Здесь первая цифра обозначает высоту волны, вторая — ширину настила, третья — толщину листа.

 








Дата добавления: 2015-08-21; просмотров: 6218;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.