Тема 5. Математическое обеспечение АСУП

Математическое обеспечение (МО) АСУ — это система методов, приемов и средств, позволяющих эффективно разрабатывать программы решения на ЭВМ конкретных задач АСУ, управлять работой ЭВМ в процессе решения этих задач, контролировать правильность работы ЭВМ.

Основными положениями, которыми необходимо руководствоваться при создании МО АСУ, являются следующие:

- совместимость и базирование разрабатываемого МО АСУ на имеющемся МО ЭВМ;

- ориентированность выбираемых средств МО на задачи АСУ;

- достаточное разнообразие средств автоматизации программирования;

- возможность эффективного внесения изменений в рабочие программы;

- возможность однозначного и исчерпывающего описания алгоритмов;

- возможность оптимизации работы программ частного применения;

- модульность построения программ.

МО АСУ служит для представления пользователю широкого спектра услуг по технологии программирования. Его можно разделить на две части: составление управляющих программ и составление обрабатывающих программ.

Управляющие программы осуществляют первоначальную загрузку оперативной памяти машин и управление работой АСУП, включая обработку прерываний, распределение работы каналов, загрузку программ из библиотеки в оперативную память. Управляющие программы обеспечивают многопрограммную работу, осуществляют связь с оператором.

Обрабатывающие программы включают в себя систему автоматизации программирования и обслуживающие программы.

Функции системы автоматизации программирования следующие: запись программ на входных языках программирования; трансляции программ на внутренний язык ЭВМ; объединение (сборка) нужных конфигураций (сегментов) из стандартных подпрограмм; отладка программ на уровне входных языков; корректировка программ на уровне входных языков.

Основными задачами обслуживающих программ являются следующие: запись программ в библиотеку; исключение программ из библиотеки; перезапись программ с одного магнитного носителя на другой, печать и вывод программ на перфоносители; вызов нужных программ в процессе работы в оперативную память и настройка ее по месту размещения.

Основными компонентами МО АСУ являются системная диспетчерская программа и библиотека стандартных подпрограмм и типовых программ, предназначенных для обработки производственно-экономической информации.

Системная диспетчерская программа обеспечивает функционирование АСУП в режиме, определенном производственно-хозяйственной или административной деятельностью.

Библиотека стандартных подпрограмм, имеющаяся в МО ЭВМ, является переходной ступенью к разработке системной библиотеки, ориентированной на процессы обработки информации в АСУ. Системная библиотека должна содержать:

- программы ввода и преобразования в машинную форму документов и других письменных источников исходных данных;

- программы для организации машинных массивов, характеризуемых как большими объемами, так и сложностью их структуры, для эффективного поиска и извлечения требуемых данных из массивов;

- программы для преобразования данных в наиболее приемлемую для человека форму (в виде графиков, схем, изображений) и вывода их на внешние устройства.

Управлять, естественно, всегда стремятся как можно лучше - обеспечить выпуск продукции лучшего качества с минимальными издержками, достичь наивысшей производительности труда, быстрее достичь намеченной цели и т. д., и т. п.

Качество управления прямо зависит от качества принимаемых решений и точности их реализации. При поиске лучших решений часто недостаточно только опыта и интуиции тех, кто принимает решения. Лиц, принимающих решения (сокращенно ЛПР), требуется вооружить соответствующими методами и инструментами принятия решений, позволяющими находить приемлемые решения, сравнивать их между собой и выбирать наиболее подходящие для имеющихся условий и требований. Одним из таких инструментов являются математика и экономика - математические методы. Название «экономико-математические» эти методы получили из-за того, что решаемые с их помощью задачи имеют экономический смысл, а формулируются и решаются с помощью математики. Математические выражения связывают основные факторы, влияющие на качество решений, манипуляции с ними помогают находить искомые решения.

Формализованная постановка задач управления позволяет использовать средства вычислительной техники для анализа допустимых управляющих решений, поиска наиболее рационального или даже оптимального решения. За руководителем остается принятие окончательного решения, а также учет и анализ трудно формализуемых факторов, влияющих на функционирование объекта управления. Нахождение оптимальных планов производства, наиболее рациональных маршрутов перевозок, определение оптимального уровня запасов и т.д.- примеры задач, решаемых с помощью экономико-математических методов. Попытки применения математики для решения экономических задач начались до появления ЭВМ и АСУ. Еще в 1939 г. Л. В. Канторович опубликовал работу «Математические методы организации и планирования производства».

К математическим моделям для АСУ предъявляется ряд требований. Во-первых, математическая модель объекта управления должна достаточно полно (адекватно) описывать основные закономерности его функционирования. Во-вторых, должна быть ориентирована на использование определенных методов (или группы методов), с помощью которых можно найти искомое решение. В-третьих, время нахождения управляющих решений должно быть приемлемым. При этом определенные ограничения накладываются используемой ЭВМ- ее быстродействием и объемом памяти.

Применение математических моделей должно предусматриваться при создании АСУ, а сами модели должны быть такими, чтобы их можно было непосредственно использовать в процессе управления. Это непременное условие требует тесной увязки разработок моделей с выбором структуры выполнения работ, требует соответствующего информационного обеспечения, новых методов ведения работ и даже новых форм документов. Это требование связано с тем, что математические модели должны быть органически включены в поток работ системы управления. Поэтому разработчики математических моделей, помимо знания математики, должны четко представлять себе сущность самих задач или функции управления, знать возможности используемой ЭВМ, возможности и структуру математического обеспечения, процедуру работ. Наконец, применяемые модели необходимо обеспечить соответствующей информацией. Как бы хорошо модель ни описывала поведение объекта, если на практике невозможно получить достоверные данные о значении всех переменных, входящих в модель, то ее использование невозможно. Ограничения, накладываемые ЭВМ, возможностями информационного обеспечения, и ряд других часто приводят к необходимости огрубления моделей, т. е. нахождения приближенных описаний поведения объектов управления. При этом, естественно, существуют пределы, за которые выходить нельзя, чтобы не получить недостоверные результаты.

Использование математических моделей в работе системы управления требует наличия соответствующей нормативной базы, наличия классификаторов, оперативно корректируемой информации, адекватного технического обеспечения и т.д. Отсутствие всех этих факторов - одна из причин недостаточного уровня применения мате­матики в АСУ.

Другая причина - чисто «математическая». Чтобы применить математическую модель, ее нужно иметь. Сложность реальных задач, необходимость учета множества часто весьма разнородных параметров и ограничений, нелинейностей, случайных событий определяют трудности с разработкой самих математических моделей, причем таких, которые можно непосредственно использовать в процессах управления для получения лучших управляющих решений. Практика показала, что для административного управления нужна «своя» математика, так как классические аналитические методы, с успехом применяемые при управлении техническими объектами, часто «не работают» в системах организационного управления (хотя в ряде случаев их применение позволяет получить необходимые результаты). Аналитические методы пригодны тогда, когда модель представляет собой систему сравнительно небольшого числа линейных или разностных уравнений первого или второго порядка, и малопригодны в случае больших порядков, необходимости учета нелинейностей, случайных возмущений. На практике не так много задач, которые могут быть решены классическими оптимизационными методами или методами математического программирования.

Следует заметить, что сложность задач управления, большая размерность математических уравнений, являющихся моделями этих задач, как правило, делают нереальной и нецелесообразной разработку единых «глобальных» моделей, описывающих работу всей системы управления, ее отдельных функций.

В практике управления постоянно требуется оценивать эффективность (качество) принимаемых решений. При этом необходимо оценивать влияние различных факторов на эффективность - изменений маршрута прохождения деталей на производительность оборудования, изменения цены на спрос и т. д., и т. п. При решении таких зада приходится иметь дело с множеством чисел - отсюда название «численные методы». Причем результаты вычислений также нужны в численной форме. В большинстве случаев аналитические методы при этом непригодны. Приходится обращаться к численным методам машинной обработки.

Машинная имитация - это эксперимент, проводимый с помощью ЭВМ не на реальном объекте, а на его модели, описывающей поведение изучаемой системы в течение определенного отрезка времени с введением в случае необходимости изменений в значение параметров, и структуру и взаимосвязь. При этом модель объекта не обязательно должна быть записана в виде математических уравнений - она может быть словесным описанием операций, производимых над набором чисел, вместе со значениями этих чисел (так называемая операторная форма записи). Эти модели дают алгоритм, т. е. последовательность действий, операций, осуществление которых приводит к искомому конкретному решению. Другими словами, алгоритмические методы дают не столько решение, сколько способ его нахождения, что существенно расширяет их возможности по сравнению с аналитическими методами.

Уравнения, используемые в имитационном моделировании, отражают предположения, связывающие управляемые переменные, внешние возмущения и результаты тех или иных действий или решений. В реальных условиях значения ряда переменных являются случайными. Поэтому характеристики функционирования систем в этих случаях имеют вид законов распределения вероятностей, конкретные значения переменных получаются на основе статистических выводов.

С помощью численных (алгоритмических) методов решаются модели массового обслуживания и управления запасами, ряд моделей оперативного планирования и управления производством, финансовые модели, модели деловых игр и т. д. Пожалуй, именно на модели деловой игры наиболее наглядно можно представить применение машинных экспериментов в управлении. Деловая игра - это численный эксперимент с моделью, причем при самом активном участии человека на этапах принятия решений. Эксперименты с моделью позволяют наблюдать влияние различных параметров на результаты функционирования системы, изменяя и уточняя различные предположения в модели, вводя изменения в функциональные характеристики и расчетные формулы.

Еще одна и достаточно принципиальная особенность моделей машинной имитации связана с тем, что многие из них позволяют ЛПР участвовать в нахождении решений, вмешиваться в процессы счета. Это достигается использованием режима диалога с ЭВМ.

Модели для машинных экспериментов, рассчитанные на практическое применение, должны удовлетворять ряду требований. Одно из них - удобство ввода данных и изменения их значений, а также подготовка машинных программ для осуществления экспериментов на ЭВМ. Если исходные данные могут быть введены и в пакетном режиме, то изменение их значений, т. е. оперативное изменение параметров функционирования систем, лучше (а часто просто необходимо) вести в диалоговом режиме. Есть несколько вариантов организации такого диалога.

К сожалению, в реальных моделях «подправить» недопустимый набор на основе одной только интуиции практически невозможно. Это обстоятельство приводит к тому, что диалог становится более сложным (и более содержательным) и для человека, и для машины: на ЭВМ возлагается формирование допустимых наборов управляющих воздействий и «исправление» недопустимых. Для формирования допустимых наборов управляющих воздействий могут в свою очередь использоваться математические модели, а для «исправления» недопустимых разрабатываются специальные поисковые алгоритмы.

Способы организации данных предусматривают структуру их представления, позволяющую изменять как отдельные значения, так и целый набор данных. В частности, это удобно делать с помощью так называемых древовидных структур, списочной организации данных, набора данных. Такие структуры позволяют достаточно легко оперировать с массивами, добавляя новые данные, изменяя значения старых, контролировать и направлять информационные потоки. При этом человеку обеспечивается постоянный доступ к информации, хранящейся в памяти ЭВМ. Наконец, языки имитационного моделирования включают в себя механизмы, позволяющие описывать динамику состояния систем, смену их состояний во времени. Все это дает возможность описывать поведение имитируемых систем в терминах, специально созданных на базе основных понятий имитации. Особенно важно, что в основе языков имитационного моделирования лежат естественные языки.

Хотя в настоящее время численные методы решения экстремальных задач достаточно хорошо разработаны (по крайней мере для определенных классов задач) выбор конкретного метода для использования в АСУ представляет собой нетривиальную задачу, поскольку для одной и той же модели методы отыскания управляющих воздействий могут отличаться по скорости сходимости, времени счета, объему требуемой памяти ЭВМ и ряду других показателей. Более того, случается, что методы, в целом хорошо «работающие» в определенном классе задач, для конкретной задачи этого класса могут оказаться хуже, чем «менее хорошие».

 

Тема 6. Создания автоматизированных систем (АИС)

и технологий (АИТ)








Дата добавления: 2015-08-21; просмотров: 1170;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.