Электронные ключи и простейшие формирователи импульсов
В состав многих импульсных устройств входят электронные ключи. Основу любого электронного ключа составляет активный элемент (полупроводниковый диод, транзистор, операционный усилитель), работающий в ключевом режиме. Ключевой режим характеризуется двумя состояниями ключа: “Включено” – “Выключено”. На рис.3.5., а – в приведены упрощенная схема и временные диаграммы идеального ключа. При разомкнутом ключе i=0, uвых=E, при замкнутом ключе i=E/R, uвых=0. При этом предполагается, что сопротивление разомкнутого ключа бесконечно велико, а сопротивление замкнутого ключа равно нулю. В реальных ключах токи, а также уровни выходного напряжения, соответствующие состояниям “Включено” – “Выключено”, зависит от типа и параметров применяемых активных элементов и переход из одного состояния в другое происходит не мгновенно, а в течение времени, обусловленного инерционностью активного элемента и наличием паразитных емкостей и индуктивности цепи. Качество электронного ключа определяется следующими основными параметрами:
· падением напряжения на ключе в замкнутом состоянии u3;
· током через ключ в разомкнутом состоянии iр;
![]() |
Рис. 3.5. Схема - а, временные диаграммы тока - б и выходное напряжение – в идеального ключа |
· временем перехода ключа из одного состояния в другое (временем переключения) tпер.
Чем меньше значения величин U, iр и tпер, тем выше качество ключа. Простейший тип электронных ключей – диодные ключи. В качестве активных элементов в них используют полупроводниковые или электровакуумные диоды. На рис.3.6,а - приведена схема последовательного диодного ключа, а на рис.6,б – его
![]() |
Рис. 3.6. Схема - а и передаточная характеристика – б последовательного диодного ключа с нулевым уровнем включения. |
передаточная характеристика. При положительном входном напряжении диод открыт и ток через него
,
Rпр – прямое сопротивление диода.
![]() |
Рис. 3.7. Схема - а и передаточные характеристики - б последовательного двоичного ключа с ненулевым уровнем включения. |
Выходное напряжение
.
Обычно Rпр << R, тогда Uвых ≈ Uвх. При входном отрицательном напряжение обратный ток через диод
,
где Rобр – обратное сопротивление диода.
При этом выходное напряжение
.
Как правило, Rобр>>R и Uвых≈R(Uвх/Rобр)<<Uвх. При изменении полярности включения диода график функции Uвых=f(Uвх) повернется на угол π вокруг начала координат. Схеме рис.3.6,а соответствует нулевой уровень включения(уровень входного напряжения, определяющий отпирание или запирание диода). Для изменения уровня включения в цепь ключа вводят источник напряжения смещения E0 (рис.3.7,а). В этом случае при Uвх>E0 диод открыт и Uвых≈Uвх, а при Uвх< E0 – закрыт и Uвых=E0 (рис.3.7,б). Если изменить полярность источника E0, то график функции Uвых (Uвх ) приобретет вид, показанный на рис.3.7,б – пунктирной линией.
![]() |
Рис. 3.8. Схема - а и передаточные характеристики - б параллельного диодного ключа с ненулевым уровнем включения. |
![]() |
Рис.3.9.Схема - а и передаточная характеристика - б двойного диодного ключа. |
Используя выше приведенный принцип анализа работы диодных ключей можно построить различные ключевые схемы. Для примера на рис.3.8 и 3.9 приведены схемы и передаточные характеристики параллельного и двойного диодных ключей. Диодные ключи не позволяют электрически разделить управляющую и управляемую цепи, что часто требуется на практике. В этих случаях используют транзисторные ключи. На рис.3.10,а приведена схема ключа на биполярном транзисторе. Входная (управляющая) цепь отделена от выходной (управляемой) цепи. Ключ мало отличается от усилителя, выполненного по схеме с общим эмиттером. Однако транзистор работает включевом режиме, характеризуемом двумя состояниями. Первое состояние определяется точкой А1 на выходных характеристиках транзистора; его называют режимом отсечки. В режиме отсечки ток базы I6=0, коллекторный ток Iк1 равен начальному коллекторному току, а коллекторное напряжение Uн=UК1≈Eк (рис.3.10,б). Режим отсечки реализуется при отрицательных потенциалах базы. Второе состояние определяется точкой А2 и называется режимом насыщения. Он реализуется при положительных потенциалах базы. При этом ток базы определяется в основном сопротивлением резистора R6 и Iб2=Uвх / R6, поскольку сопротивление открытого эмиттерного перехода мало. Коллекторный переход также открыт, и ток коллектора Iк2≈Eк/Rк, а коллекторное напряжение Uк2≈0. Из режима отсечки в режим насыщения транзистор переводится воздействием положительного входного напряжения. При этом повышению входного напряжения (потенциала базы) соответствует понижение входного напряжения (потенциала коллектора), и наоборот. Такой ключ называют инвертирующим (инвертором). В рассмотренном транзисторном ключе уровни выходного напряжения, соответствующие режимам отсечки и насыщения, стабильны и почти не зависят от температуры.
![]() |
Рис. 3.10. Схема - а и характеристики режима работы - б ключа на биполярном транзисторе |
Существуют такжеповторяющиеключи, у которых понижению входного напряжения соответствует понижение выходного напряжения. Повторяющий ключ выполняют по схеме эмиттерного повторителя.
Время переключения ключей на биполярных транзисторах, также как диодных ключей, определяется постоянной времени переходного процесса
![]() | ![]() | |
Рис. 3.11. Диаграммы, поясняющие работу двустороннего ограничителя | Рис. 3.12. Сглаживание вершин импульсов с помощью ограничителя сверху | |
![]() ![]() | ||
Рис. 3.13. Выделение импульсов с помощью ограничителей: а – по амплитуде, б – по полярности | ||
![]() |
Рис. 3.14. Схема - а и диаграммы работы - б дифференцирующей цепи. |
при включении и выключении р-n-переходов и зависит от их емкости и величины сопротивлений, определяемых технологиями производства элементов ключей. Для повышения быстродействия и входного сопротивления применяют ключи на полевых транзисторах.
Электронные ключи часто используют в устройствах формирования импульсов. Для примера: на рис.3.11. приведена диаграмма поясняющая использования двойного диодного ключа рис.3.9. для преобразования сигналы близкие к прямоугольной форме; на рис.3.12. приведена диаграмма, поясняющая использование параллельного ключа рис.3.8. для сглаживания вершины импульса; на рис.3.13 а и б приведены диаграммы, поясняющие использования ключей для выделения сигналов по амплитуде и полярности. В импульсной технике для формирования импульсов совместно с электронными ключами широко используют дифференцирующие и интегрирующие RC–цепи. Для формирования коротких импульсов служат дифференцирующая цепь – рис.14 а, использование которой преобразует импульс большой длительности в короткие импульсы рис.3.14 б, позволяющие ускорить запуск работы импульсных устройств.
Дата добавления: 2015-06-05; просмотров: 3091;