Семь красных стрел атаки.

 

Кстати, неустойчивость плазмы - серьезная проблема не только токамаков , но практически и всех других установок для термоядерного синтеза. О некоторых из них уже давно пора сказать несколько слов. Лет двадцать назад был придуман эффектный рисунок, отображающий основные методы, с которыми связывались надежды на решение проблемы управляемого термояда. Саму задачу представлял круг с надписью "УТС", в который, как на карте военного наступления, с разных сторон упиралось больше десятка красных стрел с соответствующими надписями.

Сегодня таких стрел было бы нарисовано меньше. Какие-то методы не вышли еще из сферы теоретических поисков, для других не видно пока реальных способов практического применения. Специалисты, скорее всего, оставили бы на карте семь красных стрел атаки:

1. Токамак.

2. Стелларатор. Здесь, как и в Токамаке, плазма тоже подвешена в магнитном поле, но тока в ней нет. Греют плазму в основном мощным радиоизлучением, а держат ее только сложной формы магнитные поля, созданные внешними катушками.

 

3. Открытая ловушка, или, иначе, пробкотрон. В цилиндрическую вакуумную камеру, запертую магнитными пробками, точно выбрав направление, впрыскивают атомы, которые тормозятся в водородном газе и превращают его в горячую плазму. Удерживают ее магнитные поля сложной конфигурации.


4. Плазменный фокус. В вакуумной камере между двумя электродами создается мощный импульс тока, который быстро нагревает плазму и дает всплеск ядерного синтеза. Плазма, как и в предыдущих случаях, связана с магнитным полем, но синтез идет в импульсах микросекундной длительности.

 

5. Лазерный термояд. Водородный синтез происходит в миллиметровых размеров шариках, наполненных дейтерием или дейтерий-тритиевой смесью в твердом либо газообразном состоянии. Шарики один за другим падают в рабочее пространство установки, где по ним поочередно со всех сторон ударяют мощные лазерные лучи. Они на лету сильно нагревают и сжимают шарик-мишень, в котором, как в водородной бомбе, происходит термоядерный микровзрыв и выделяется значительная энергия (см. "Наука и жизнь" № 11, 1999 г.). Стрела "Лазерный термояд" разветвляется на четыре самостоятельные стрелки - наряду с лазерными лучами в таком инерционном синтезе пытаются использовать мощные пучки электронов, легких и тяжелых ионов.

 

6. Мюонный катализ. В дейтерий-тритиевый газ вводят мю-мезоны (мюоны) - частицы с таким же отрицательным зарядом, как у электрона, но в 200 раз более тяжелые. С участием мюонов в большом количестве образуются напоминающие атом конструкции - мюон вращается вокруг двух сблизившихся, но пока еще независимых ядер дейтерия и трития. Этот "тяжелый электрон" находится на орбите, весьма близкой к ядрам, и сильно "сжимает" их своим электрическим полем. Ядра сливаются, выделяя порцию энергии, и такой процесс с одним мюоном повторяется более ста раз. Так что мюон действует как катализатор - облегчает и ускоряет ядерный синтез, снижает необходимую для него температуру.

7. Галатея. Традиционные магнитные ловушки, перечисленные выше, имеют одно общее свойство: плазма и магнитное поле в них "перемешаны". Это приводит к нескольким неприятным явлениям, одно из которых - неустойчивость плазменного шнура. Заряженные частицы плазмы движутся в поле по спиралям, образуя круговые токи. Собственные магнитные поля токов направлены противоположно полям внешним, и при их взаимодействии возникает сила, выталкивающая плазму из поля.

В устройствах, называемых галатеями, магнитное поле образует своего рода "корку", или "забор", который отбрасывает вылетающую частицу внутрь плазменного шнура. Для этого внутри плазменного объема нужно подвесить сверхпроводящие кольца, по которым циркулирует электрический ток. Один из вариантов такого "магнитотермоядерного реактора" был предложен А.Д. Сахаровым в 1950 году.

 








Дата добавления: 2015-05-16; просмотров: 799;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.