Методы микроскопии в микробиологии: световая, темнопольная, фазовоконтрастная, люминесцентная. Их практическое применение.
Размеры микробов, имеющих клеточное строение, составляют 0,2–20 мкм и они легко обнаруживаются в иммерсионном микроскопе. Вирусы во много раз меньше. Диаметр самых больших из них, например вируса натуральной оспы, около 300 нм, а у самых мелких составляет 20–30 нм. Ввиду этого для выявления вирусов используются электронные микроскопы.
В микробиологических исследованиях применяют световые и электронные микроскопы; методы оптической и электронной микроскопии.
Оптический микроскоп. Наиболее важной оптической частью микроскопа являются объективы, которые делятся на сухие и иммерсионные.
Сухие объективы с относительно большим фокусным расстоянием и слабым увеличением применяются для изучения микроорганизмов, имеющих крупные размеры (более 10–20 мкм), иммерсионные (лат. immersio – погружение) с фокусным расстоянием – при исследовании более мелких микробов.
При микроскопии иммерсионным объективом х90 обязательным условием является его погружение в кедровое, персиковое или в вазелиновое масло, показатели преломления света у которых близки предметному стеклу, на котором делают препараты. В этом случае падающий на препарат пучок света не рассеивается и, не меняя направления, попадает в иммерсионный объектив. Разрешающая способность иммерсионного микроскопа находится в пределах 0,2 мкм, а максимальное увеличение объекта достигает 1350.
При использовании иммерсионного объектива вначале центрируют оптическую часть микроскопа. Затем поднимают конденсор до уровня предметного столика, открывают диафрагму, устанавливают объектив малого увеличения и при помощи плоского зеркала освещают поле зрения. На предметное стекло с окрашенным препаратом наносят каплю масла, в которую под контролем глаза осторожно погружают объектив, затем, поднимая тубус, смотрят в окуляр и вначале макро–, а потом микровинтом устанавливают четкое изображение объекта. По окончании работы удаляют салфеткой масло с фронтальной линзы объектива.
Микроскопия в темном поле зрения проводится при боковом освещении и обычно применяется при изучении подвижности бактерий или обнаружении патогенных спирохет, поперечник которых может быть меньше 0,2 мкм. Чтобы получить яркое боковое освещение, обычный конденсор заменяют специальным параболоидом–конденсором, в котором центральная часть нижней линзы затемнена, а боковая поверхность зеркальная. Этот конденсор задерживает центральную часть параллельного пучка лучей, образуя темное поле зрения. Краевые лучи проходят через кольцевую щель, попадают на боковую зеркальную поверхность конденсора, отражаются от нее и концентрируются в его фокусе. Если на пути луча нет каких–либо частиц, он преломляется, падая на боковую зеркальную поверхность, отражается от нее и выходит из конденсора. Когда луч встречает на своем пути микробы, свет отражается от них и попадает в объектив – клетки ярко светятся. Так как для бокового освещения необходим параллельный пучок света, применяется только плоское зеркало микроскопа. Обычно исследование в темном поле зрения проводится под сухой системой. При этом небольшую каплю материала помещают на предметное стекло и накрывают покровным, не допуская образования пузырьков воздуха.
Фазово–контрастная и аноптральная микроскопия основаны на том, что оптическая длина пути света в любом веществе зависит от показателя преломления. Это свойство используют с целью увеличить контрастность изображения прозрачных объектов, какими являются микробы, т. е. для изучения деталей их внутреннего строения. Световые волны, проходя через оптически более плотные участки объекта, отстают по фазе от световых волн, не проходящих через них. При этом интенсивность света не меняется, а только изменяется фаза колебания, не улавливаемая глазом и фотопластинкой. Для повышения контрастности изображения фазовые колебания при помощи специальной оптической системы превращаются в амплитудные, хорошо улавливаемые глазом. Препараты в световом поле зрения становятся более контрастными – положительный контраст; при отрицательном фазовом контрасте на темном фоне виден светлый объект. Вокруг изображений нередко возникает ореол.
Большей четкости изображения малоконтрастных живых микробов (даже некоторых вирусов) достигают в аноптральном микроскопе. Одной из важнейших его деталей является линза объектива, расположенная вблизи «выходного» зрачка, на которую нанесен слой копоти или меди, поглощающий не менее 10 % света. Благодаря этому фон поля зрения приобретает коричневый цвет, микроскопируемые объекты имеют различные оттенки – от белого до золотисто–коричневого.
Люминесцентная микроскопия основана на способности некоторых клеток и красителей светиться при попадании на них ультрафиолетовых и других коротковолновых лучей света. Люминесцентные микроскопы представляют собой обычные световые микроскопы, снабженные ярким источником света и набором светофильтров, которые выделяют коротковолновую часть спектра, возбуждающую люминесценцию. Между зеркалом микроскопа и источником света устанавливают сине–фиолетовый светофильтр (УФС–3, ФС–1 и пр.). На окуляр надевают желтый светофильтр (ЖС–3 или ЖС–18).
Различают собственную (первичную) флюоресценцию и наведенную (вторичную). Так как большая часть микробов не обладает собственной флюоресценцией, они обрабатываются красителями, способными флюоресцировать (вторичная люминесценция). В качестве флюорохромов используют аурамин (для обработки микобактерий туберкулеза), акридин желтый (гонококки), корифосфин (коринебактерии дифтерии), флюоресцеинизотиоцианат (для мечения антител).
Люминесцентная микроскопия отличается рядом преимуществ: дает цветное изображение и значительную контрастность; позволяет обнаружить живые и погибшие микроорганизмы, прозрачные и непрозрачные объекты; установить локализацию бактерий, вирусов и их антигенов в пораженных клетках организма.
Электронный микроскоп. В электронном микроскопе вместо света используется поток электронов в безвоздушной среде, на пути которых находится анод. Источником электронов является электронная пушка (вольфрамовая нить, разогреваемая до 2500–2900 °С). Оптические линзы заменены электромагнитами. Между вольфрамовой нитью и анодом возникает электрическое поле в 30 000–50 000 Вт, что сообщает электронам большую скорость, и они, проходя через отверстие анода, попадают в первую электромагнитную линзу (конденсор). Электронные лучи на выходе из конденсора собираются в плоскости исследуемого объекта. Они отклоняются под разными углами за счет различной толщины и плотности препарата и попадают в объективную электромагнитную линзу, снабженную диафрагмой. Электроны, незначительно отклонившиеся при встрече с объектом, проходят через диафрагму, а отклонившиеся под большим углом – задерживаются, благодаря чему обеспечивается контрастность изображения. Линза объектива дает промежуточное увеличение изображения, которое наблюдается через смотровое окно. Проекционная линза может увеличивать изображение во много раз. Это изображение принимается на флюоресцирующий экран и фотографируется. Разрешающая способность электронных микроскопов равна 1,0 –0,14нм
Стерилизация. Методы стерилизации и стерилизационная аппаратура. Режимы стерилизации и контроль качества стерилизации в автоклаве.
Стерилизация – полное уничтожение всех микроорганизмов. Стерилизуют посуду, инструменты, питательные среды, лекарственные препараты, перевязочные средства, медицинское белье, эндоскопические аппараты и другие объекты. Для их стерилизации применяются в основном физические и механические методы.
Стерилизация в пламени проводится для обеззараживания бактериальных петель, игл, предметных и покровных стекол, пинцетов.
Стерилизация горячим воздухом проводится в электрических сухожаровых шкафах, имеющих различную форму и размеры, снабженных хорошей тепловой изоляцией. Необходимая температура автоматически поддерживается терморегулятором. Cтерилизуют лабораторную посуду и шприцы при температуре 180°С в течение 1 ч. Чашки Петри, пастеровские и градуированные пипетки помещают в специальные металлические пеналы или заворачивают в бумагу по несколько штук. Пробирки и колбы закрывают ватными пробками.
Стерилизация паром проводится двумя способами: насыщенным паром под давлением и текучим паром.
СТЕРИЛИЗАЦИЮ ПАРОМ ПОД ДАВЛЕНИЕМ осуществляют в автоклаве, который представляет собой толстостенный котел цилиндрической формы, покрытый снаружи кожухом и герметически закрывающийся крышкой, бывают горизонтальные и вертикальные. Пар поступает в рабочую камеру из маленького котла, воду в котором нагревают электротоком. Давление измеряют манометром.
Не изменяющиеся под действием высокой температуры и давления питательные среды (МПА, МПБ), растворы или посуду с заразным материалом стерилизуют при 1 атм (121°С) 15–20 мин; среды с углеводами и нативными белками – при 0,5 атм (110°С) 5–10 мин; материал и посуду, содержащие бациллы сибирской язвы, обеззараживают при 1 атм в течение 2ч.
Контроль за соблюдением режимных параметров работы автоклава проводится с помощью максимального термометра. В отдельных случаях в автоклав помещают бензойную кислоту или бензонафтол с точками плавления 120°С и 110°С.
СТЕРИЛИЗАЦИЯ ТЕКУЧИМ ПАРОМ проводится троекратно (дробно) в течение трех дней по 30–60 мин в автоклаве при незавинченной крышке и открытом выпускном кране или в спец аппарате, который представляет собой металлический цилиндр, покрытый теплоизоляционным материалом с отверстием в конической крышке для выхода пара, краном и указательной трубкой в донной части. Внутри аппарата имеется подставка для стерилизуемых материалов. Залитую в него воду подогревают любым источником тепла. В текучепаровом аппарате стерилизуют питательные среды, изменяющие свои свойства при температуре выше 100°С: молоко, желатину, картофель и среды с углеводами. Вегетативные формы микроорганизмов при такой стерилизации погибают, а споры сохраняются. Спустя сутки при комнатной температуре часть из них прорастает и повторное воздействие пара их уничтожает. Прогреванием на третьи сутки полностью обезвреживают всю спороносную микрофлору, которая к этому времени завершает вегетацию.
Свертывание (уплотнение) сыворотки и яичных сред производят в двустенном свертывателе с электрическим нагревом. Аппарат покрыт теплоизоляционным материалом и имеет стеклянную и металлическую крышки. Воду в свертыватель наливают через имеющееся в его верхней части отверстие, которое закрывается пробкой с вмонтированным термометром. Пробирки со средами укладывают на дно свертывателя в наклонном положении. Прогревают среды однократно или дробно при температуре 80–90°С в течение 1 ч.
Фильтрование как механический способ стерилизации может быть использовано для обеспложивания жидких веществ, которые нежелательно подвергать действию высокой температуры, например сывороток, антибиотиков. Для этого изготовляют мелкопористые фильтры с точно градуированными порами, которые задерживают микроорганизмы.
В быту используется стерилизация кипячением для обработки игл и шприцев. Кипятят их в стерилизаторах 30–45 мин. Для повышения точки кипения и устранения жесткости воды добавляют 1 % соды. Этот метод не обеспечивает полного уничтожения микробов, так как споры бактерий и некоторые вирусы выдерживают кипячение в течение нескольких часов.
Дата добавления: 2015-04-01; просмотров: 7927;