КОДИРОВАНИЕ АССОЦИАЦИЙ

Обычно сеть обучается распознаванию множества образов. Обучение производится с использованием обучающего набора, состоящего из пар векторов A и B. Процесс обучения реализуется в форме вычислений; это означает, что весовая матрица вычисляется как сумма произведении всех векторных пар обучающего набора. B символьной форме

Предположим, что все запомненные образы представляют собой двоичные векторы. Это ограничение покажется менее строгим, если вспомнить, что все содержимое Библиотеки Конгресса может быть закодировано в один очень длинный двоичный вектор. В работе [11] показана возможность достижения более высокой производительности при использовании биполярных векторов. При этом векторная компонента, большая чем 0, становится +1, а компонента, меньшая или равная 0, становится –1.

Предположим, что требуется обучить сеть с целью запоминания трех пар двоичных векторов, причем векторы Ai имеют размерность такую же, как и векторы Вi. Надо отметить, что это не является необходимым условием для работы алгоритма; ассоциации могут быть сформированы и между векторами различной размерности.

Исходный вектор Ассоциированный вектор Бинарная версия
A1 = (1,0,0) B1 = (0,0,1) A’1 = (1,–1,–1) B’1 = (–1,–1,1)
A2 = (0,1,0) B2 = (0,1,0) A’1 = (–1,1,–1) B’1 = (–1,1,–1)
A3 = (0,0,1) B3 = (1,0,0) A’1 = (–1,–1,1) B’1 = (1,–1,–1)

 

Вычисляем весовую матрицу

W = A’1tB’1+A’2tB’2+ A’3tB’3

–1 –1 + –1 + –1 = –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1

 

Далее прикладывая входной вектор А = (1,0,0), вычисляем выходной вектор О

O = A1tW =(1,0,0) x –1 = (–1,–1,3)
–1 –1
–1 –1

Используя пороговое правило

bi = 1, если oi > 0,

bi = 0, если oi < 0,

bi = 0, не изменяется, если oi = 0

вычисляем

B’1 = (0,0,1),

что является требуемой ассоциацией. Затем, подавая вектор В’1 через обратную связь на вход первого слоя к Wtполучаем

O = B’1Wt=(0,0,1) x –1 = (3,–1,–1)
–1 –1
–1 –1

 

что дает значение (1,0,0) после применения пороговой функции, образуя величину вектора A1.

Этот пример показывает, как входной вектор A с использованием матрицы W производит выходной вектор B. В свою очередь вектор B с использованием матрицы Wtпроизводит вектор A, таким образом в системе формируется устойчивое состояние и резонанс.

ДАП обладает способностью к обобщению. Например, если незавершенный или частично искаженный вектор подается в качестве A, сеть имеет тенденцию к выработке запомненного вектора B, который в свою очередь стремится исправить ошибки в A. Возможно, для этого потребуется несколько проходов, но сеть сходится к воспроизведению ближайшего запомненного образа.

Системы с обратной связью могут иметь тенденцию к колебаниям; это означает, что они могут переходить от состояния к состоянию, никогда не достигая стабильности. В [9] доказано, что все ДАП безусловно стабильны при любых значениях весов сети. Это важное свойство возникает из отношения транспонирования между двумя весовыми матрицами и означает, что любой набор ассоциаций может быть изучен без риска возникновения нестабильности.

Существует взаимосвязь между ДАП и рассмотренными в гл. 6 сетями Хопфилда. Если весовая матрица W является квадратной и симметричной, тоW=Wt. В этом случае, если слои 1 и 2 являются одним и тем же набором нейронов, ДАП превращается в автоассоциативную сеть Хопфилда.








Дата добавления: 2015-04-03; просмотров: 821;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.