Универсальные и импульсные диоды

 

Они применяются для преобразования высокочастотных и им­пульсных сигналов. В данных диодах необходимо обеспечить мини­мальные значения реактивных параметров, что достигается благо­даря специальным конструктивно-технологическим мерам.

Одна из основных причин инерционности полупроводниковых диодов связана с диффузионной емкостью. Для уменьшения времени жизни t используется легирование материала (например, золотом), что создает много ловушечных уровней в за­прещенной зоне, увеличивающих скорость рекомбинации и, следовательно, уменьшается Сдиф.

Разновидностью универсальных диодов является диод с корот­кой базой. В таком диоде протяженность базы меньше диффузион­ной длины неосновных носителей. Следовательно, диффузионная емкость будет определяться не временем жизни неосновных носи­телей в базе, а фактически меньшим временем нахождения (вре­менем пролета). Однако осуществить уменьшение толщины базы при большой площади p-n перехода технологически очень сложно. Поэтому изготовляемые диоды с короткой базой при малой площа­ди являются маломощными.

В настоящее время широко применяются диоды с p-i-n структурой, в которой две сильнолегированные области p- и n-типа разде­лены достаточно широкой областью с проводимостью, близкой к собственной (i-область). Заряды донорных и акцепторных ионов расположены вблизи границ i-области. Распределение электричес­кого поля в ней в идеальном случае можно считать однородным (в отличие от обычного p-n перехода). Таким образом, i-область с низ­кой концентрацией носителей заряда, но обладающей диэлектриче­ской проницаемостью можно принять за конденсатор, «обкладками» которого являются узкие (из-за большой концентрации носителей в p- и n-областях) слои зарядов доноров и акцепторов. Барьерная ем­кость p-i-n диода определяется размерами i-слоя и при достаточно широкой области от приложенного постоянного напряжения прак­тически не зависит.

Особенность работы p-i-n диода состоит в том, что при прямом напряжении одновременно происходит инжекция дырок из p-области и электронов из n-области в i-область. При этом его прямое со­противление резко падает. При обратном напряжении происходит экстракция носителей из i-области в соседние области. Уменьшение концентрации приводит к дополнительному возрастанию сопротив­ления i области по сравнению с равновесным состоянием. Поэтому для p-i-n диода характерно очень большое отношение прямого и об­ратного сопротивлений, что благоприятно сказывается при использовании их в переклю­чательных режимах.

В качестве высокочастотных универсальных использу­ются структуры Шоттки и Мотта. В этих приборах про­цессы прямой проводимости определяются только основными носи­телями заряда. Таким образом, у рассматриваемых диодов отсутст­вует диффузионная емкость, связанная с накоплением и рассасы­ванием носителей заряда в базе, что и определяет их хорошие вы­сокочастотные свойства.

Отличие барьера Мотта от барьера Шоттки состоит в том, что тон­кий i-слой создан между металлом М и сильно легированным полу­проводником n+, так что получается структура М-i-n. В высокоомном i-слое падает все приложенное к диоду напряжение, поэтому толщи­на обедненного слоя в n+-области очень мала и не зависит от напря­жения. И поэтому барьерная емкость практически не зависит от на­пряжения и сопротивления базы.

Наибольшую рабочую частоту имеют диоды с барьером Мотта и Шоттки, которые в отличие от p-n-перехода почти не накаплива­ют неосновных

носителей заряда в базе диода при прохождении прямого тока и поэтому имеют малое время восстановления tВОСТ (около 100 пс).

Разновидностью импульсных диодов являются диоды с накоп­лением заряда (ДНЗ) или диоды с резким восстановлением обрат­ного тока (сопротивления). Импульс обратного тока в этих диодах имеет почти прямоугольную форму (рисунок 2.6). При этом значение t1 может быть значительным, но t2 должно быть чрезвычайно малым для использования ДНЗ в быстродействующих импульсных устройствах.

Рис. 2.6. Временные диаграммы тока через импульсный диод.

 

Получение малой длительности t2 связано с созданием внутреннего поля в базе около обедненного слоя p-n-перехода путем неравномерного распре­деления примеси. Это поле является тормозящим для носителей, пришед­ших через обедненный слой при пря­мом напряжении, и поэтому препятст­вует уходу инжектированных носителей от границы обедненного слоя, заставляя их компактнее концентрироваться вблизи грани­цы. При подаче на диод обратного напряжения (как и в обычном диоде) происходит рассасывание накопленного в базе заряда, но при этом внутреннее электрическое поле уже будет способство­вать дрейфу неосновных носителей к обедненному слою перехо­да. В момент t1, когда концентрация избыточных носителей на границах перехода спадает до нуля, оставшийся избыточный за­ряд неосновных носителей в базе становится очень малым, а, следовательно, оказывается малым и время t2 спадания обратно­го тока до значения I0.

 








Дата добавления: 2015-04-21; просмотров: 1224;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.