Легирование

 

Внедрение примесей в исходную пластину (или в эпитаксиальный слой) путем диффузии при высокой температуре является ис­ходным и до сих пор основным способом легирования полупровод­ников с целью создания транзисторных структур и на их основе других элементов. Однако за последнее время широкое распространение получил и другой способ легирования - ионная имплантация.

 

3.5.1 Способы диффузии. Диффузия может быть общей и локальной. В первом случае она осуществляется по всей поверхности пластины (рисунок 3.4а), а во втором - на определенных участках пла­стины через окна в маске, например, в толстом слое SiO2 (рисунок 3.4б).

Общая диффузия приводит к образованию в пластине тон­кого диффузионного слоя, который отличается от эпитаксиального неоднородным (по глубине) распределением примеси (см. кривые N(x)на рисунках 3.6а и б).

 

а) б)

Рисунок 3.4

 

В случае локальной диффузии (рисунок 3.4б) примесь распространяется не только в глубь пластины, но и во всех перпендикулярных на­правлениях, т. е. под маску. В результате этой так называемой боковой диффузииучасток р-n перехода, выходящий на по­верхность, оказывается «автоматически» защищенным окислом. Соотношение между глубинами боковой и основной -

«вертикальной» диффузии зависит от ряда факторов, в том числе от глубины диффузионного слоя. Типичным для глубины боковой диффузии можно считать значение 0,8×L.

Диффузию можно проводить однократно и многократно. На­пример, в исходную пластину n-типа можно во время 1-й диффузии внедрить акцеп- торную примесь и получить р-слой, а затем во время 2-й диффузии внедрить в полученный р-слой (на меньшую глубину) донорную примесь и тем самым обеспечить трехслойную структуру. Соответственно различают двойную и тройную диффузию (см раздел 4.2).

При проведении многократной диффузии следует иметь в виду, что концентрация каждой новой вводимой примеси должна превышать концен- трацию предыдущей, в противном случае тип проводи­мости не изменится, а значит, не образуется р-n переход. Между тем концентрация примеси в кремнии (или другом исходном мате­риале) не может быть сколь-угодно большой: она ограничена особым параметром - предельнойрастворимостью примеси NS.Предельная растворимость зависит от температуры. При некоторой темпера­туре она достигает максимального значения, а затем снова уменьшается. Максимальные предельные растворимости вместе с со­ответствующими температурами приведены в таблице 3.1.

Таблица 3.1

Примесь As Р В Sb
NS, см-3 20×1020 13×1020 5×1020 0,6×1020
Т0, С

 

Следовательно, если проводится многократная диффузия, то для последней диффузии нужно выбирать материал с максимальной предельной растворимостью. Поскольку ассортимент примесных материалов ограничен,

не удается обеспечить более 3-х последо­вательных диффузий.

Примеси, вводимые путем диффузии, называют диффузантами(бор, фосфор и др.). Источниками диффузантов являются их химические соединения. Это могут быть жидкости (ВВr3, РОСl), твердые тела (В2О3, P2O5) или газы (В2Н6, РН3).

Внедрение примесей обычно осуществляется с помощью газотран- спортных реакций - так же, как при эпитаксии и окислении. Для этого используются либо однозонные, либо двухзонные диф­фузионные печи.

Двухзонные печи используются в случае твердых диффузантов. В таких печах (рисунок 3.5) имеются две высокотемпературные зоны, одна - для испарения источника диффузанта, вторая - собственно для диффузии.

Рисунок 3.5

 

Пары источника диффузанта, полученные в 1-й зоне, примешиваются к по- току нейтрального газа-носителя (напри­мер, аргона) и вместе с ним доходят до 2-й зоны, где расположены пластины кремния. Температура во 2-й зоне выше, чем в 1-й. Здесь атомы диффузанта внедряются в пластины, а другие составляющие химического соединения уносятся газом-носителем из зоны.

В случае жидких и газообразных источников диффузанта нет необходи- мости в их высокотемпературном испарении. Поэтому ис­пользуются однозон- ные печи, как при эпитаксии, в которые источник диффузанта поступает уже в газообразном состоянии.

При использовании жидких источников диффузанта диффузию проводят в окислительной среде, добавляя к газу-носителю кисло­род. Кислород окисляет поверхность кремния, образуя окисел SiO2, т. е. в сущности - стекло. В присут- ствии диффузанта (бора или фосфора) образуется боросиликатное или фосфорносиликатное стекло. При температуре выше 1000оС эти стекла находятся в жид­ком состоянии, покрывая поверхность кремния тонкой пленкой,так что диффузия примеси идет, строго говоря, из жидкой фазы. После застывания стекло защищает поверхность кремния в местах диффузии,

т. е. в окнах окисной маски. При использовании твердых источников диффузанта - окислов - образование стекол происходит в процессе диффузии без специально вводимого кислорода.

Различают два случая распределения примеси в диффузионном слое.

1 Случай неограниченного источника примеси.В этом случае диф-фузант непрерывно поступает к пластине, так что в её приповерхностном слое концентрация примеси поддерживается постоянной равной NS. С увеличением времени диффузии увеличивается глубина диффузионного слоя (рисунок 3.6а).

2 Случай ограниченного источника примеси.В этом случае сначала в тонкий приповерхностный слой пластины вводят некоторое количество атомов диффузанта (время t1), а затем источник диффузанта отключают и атомы примеси перераспределяются по глубине пластины при неизменном их общем количестве (рисунок 3.6б). При этом концентрация примеси на поверхности снижается, а глубина диффузионного слоя увеличивается (кривые t2 и t3). Первую стадию процесса называют ²загонкой², вторую - ²разгонкой² примеси.

а) б) в)

Рисунок 3.6

Ионная имплантация.

 

Ионной имплантацией называют метод легирования пластины (или эпитаксиального слоя) путем бомбардировки ионами примеси, ускоренными до энергии, доста­точной для их внедрения в глубь твердого тела.

Ионизация атомов примеси, ускорение ионов и фокусировка ионного пучка осуществляются в специальных установках типа ускорителей частиц в ядерной физике. В качестве примесей ис­пользуются те же материалы, что и при диффузии.

Глубина внедрения ионов зависит от их энергии и массы. Чем больше энергия, тем больше получается толщина имплантирован­ного слоя. Однако с ростом энергии возрастает и количество ра­диационных дефектовв кристалле, т. е. ухудшаются его электрофи­зические параметры. Поэтому энергию ионов ограничивают вели­чиной 100-150 кэВ. Нижний уровень составляет 5-10 кэВ. При таком диапазоне энергии глубина слоев лежит в пределах 0,1 - 0,4 мкм, т.е. она значительно меньше типичной глубины диффузионных слоев.

Концентрация примеси в имплантированном слое зависит от плотности тока в ионном пучке и времени процесса или, как говорят, от времени экспо-зиции.В зависимости от плотности тока и жела­емой концентрации время экспозиции составляет от нескольких секунд до 3-5 мин и более (иногда до

1-2 ч). Разу­меется, чем больше время экспози­ции, тем опять же больше количест­во радиационных дефектов.

Типичное распределение примеси при ионной имплантации показано на рисунке 3.6в сплошной кривой. Как видим, это распределение существенно отличается от диффузионного наличием максимума на определенной глубине.

Поскольку площадь ионного пуч­ка (1-2 мм2) меньше площади пла­стины (а иногда и кристалла), при­ходится сканироватьпучок, т. е. плавно или «шага- ми» перемещать его (с помощью специальных отклоняющих систем) пооче- редно по всем «строкам» пластины, на которых расположены отдельные ИМС.

По завершении процесса легирования пластину обязательно под­вергают отжигупри температуре 800-1100° С для того, чтобы упо­рядочить кристал- лическую решетку кремния и устранить (хотя бы частично) неизбежные радиа-ционные дефекты. При температуре отжига процессы диффузии несколько меняют профиль распре­деления (см. штриховую кривую на рисунке 3.6в).

Ионная имплантация проводится через ма­ски, в которых длина пробега ионов должна быть значительно мень­ше, чем в кремнии. Материалом для масок могут служить распро­страненные в ИМС двуокись кремния или алюминий. При этом важным достоинством ионной имплантации является то, что ионы, двигаясь по прямой линии, внедряются только в глубь пластины, а анало­гия боковой диффузии (под маску) практиче­ски отсутствует.

В принципе ионную имплантацию, как и диффузию, можно проводить многократно, «встраивая» один слой в другой. Однако сочетание энергий, времен экспозиции и режимов отжига необхо­димое для многократной имплантации, оказывается затруднитель­ным. Поэтому ионная имплантация получила главное распростра­нение при создании тонких одинарных слоев.

 








Дата добавления: 2015-04-21; просмотров: 1656;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.