БОР (Bohr), Нильс Хенрик Давид
7 октября 1885 г. – 8 ноября 1962 г.
Нобелевская премия по физике, 1922 г.
Датский физик Нильс Хенрик Давид Бор родился в Копенгагене и был вторым из трех детей Кристиана Бора и Эллен (в девичестве Адлер) Бор. Его отец был известным профессором физиологии в Копенгагенском университете; его мать происходила из еврейской семьи, хорошо известной в банковских, политических и интеллектуальных кругах. Их дом был центром весьма оживленных дискуссий по животрепещущим научным и философским вопросам, и на протяжении всей своей жизни Бор размышлял над философскими выводами из своей работы. Он учился в Гаммельхольмской грамматической школе в Копенгагене и окончил ее в 1903 г. Бор и его брат Гаральд, который стал известным математиком, в школьные годы были заядлыми футболистами; позднее Нильс увлекался катанием на лыжах и парусным спортом.
Когда Бор был студентом-физиком Копенгагенского университета, где он стал бакалавром в 1907 г., его признавали необычайно способным исследователем. Его дипломный проект, в котором он определял поверхностное натяжение воды по вибрации водяной струи, принес ему золотую медаль Датской королевской академии наук. Степень магистра он получил в Копенгагенском университете в 1909 г. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием. Среди прочего в ней вскрывалась неспособность классической электродинамики объяснить магнитные явления в металлах. Это исследование помогло Бору понять на ранней стадии своей научной деятельности, что классическая теория не может полностью описать поведение электронов.
Получив докторскую степень в 1911 г., Бор отправился в Кембриджский университет, в Англию, чтобы работать с Дж.Дж. Томсоном, который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Бора и содержащимся там выводам. Но Бор тем временем заинтересовался работой Эрнеста Резерфорда в Манчестерском университете. Резерфорд со своими коллегами изучал вопросы радиоактивности элементов и строения атома. Бор переехал в Манчестер на несколько месяцев в начале 1912 г. и энергично окунулся в эти исследования. Он вывел много следствий из ядерной модели атома, предложенной Резерфордом, которая не получила еще широкого признания. В дискуссиях с Резерфордом и другими учеными Бор отрабатывал идеи, которые привели его к созданию своей собственной модели строения атома. Летом 1912 г. Бор вернулся в Копенгаген и стал ассистент-профессором Копенгагенского университета. В этом же году он женился на Маргрет Норлунд. У них было шесть сыновей, один из которых, Oгe Бор, также стал известным физиком.
В течение следующих двух лет Бор продолжал работать над проблемами, возникающими в связи с ядерной моделью атома. Резерфорд предположил в 1911 г., что атом состоит из положительно заряженного ядра, вокруг которого по орбитам вращаются отрицательно заряженные электроны. Эта модель основывалась на представлениях, находивших опытное подтверждение в физике твердого тела, но приводила к одному трудноразрешимому парадоксу. Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию, отдавая ее в виде света или другой формы электромагнитного излучения. По мере того как его энергия теряется, электрон должен приближаться по спирали к ядру и в конце концов упасть на него, что привело бы к разрушению атома. На самом же деле атомы весьма стабильны, и, следовательно, здесь образуется брешь в классической теории. Бор испытывал особый интерес к этому очевидному парадоксу классической физики, поскольку все слишком напоминало те трудности, с которыми он столкнулся при работе над диссертацией. Возможное решение этого парадокса, как полагал он, могло лежать в квантовой теории.
В 1900 г. Макс Планк выдвинул предположение, что электромагнитное излучение, испускаемое горячим веществом, идет не сплошным потоком, а вполне определенными дискретными порциями энергии. Назвав в 1905 г. эти единицы квантами, Альберт Эйнштейн распространил данную теорию на электронную эмиссию, возникающую при поглощении света некоторыми металлами (фотоэлектрический эффект). Применяя новую квантовую теорию к проблеме строения атома, Бор предположил, что электроны обладают некоторыми разрешенными устойчивыми орбитами, на которых они не излучают энергию. Только в случае, когда электрон переходит с одной орбиты на другую, он приобретает или теряет энергию, причем величина, на которую изменяется энергия, точно равна энергетической разности между двумя орбитами. Идея, что частицы могут обладать лишь определенными орбитами, была революционной, поскольку, согласно классической теории, их орбиты могли располагаться на любом расстоянии от ядра, подобно тому как планеты могли бы в принципе вращаться по любым орбитам вокруг Солнца.
Хотя модель Бора казалась странной и немного мистической, она позволяла решить проблемы, давно озадачивавшие физиков. В частности, она давала ключ к разделению спектров элементов. Когда свет от светящегося элемента (например, нагретого газа, состоящего из атомов водорода) проходит через призму, он дает не непрерывный включающий все цвета спектр, а последовательность дискретных ярких линий, разделенных более широкими темными областями. Согласно теории Бора, каждая яркая цветная линия (т.е. каждая отдельная длина волны) соответствует свету, излучаемому электронами, когда они переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Бор вывел формулу для частот линий в спектре водорода, в которой содержалась постоянная Планка. Частота, умноженная на постоянную Планка, равна разности энергий между начальной и конечной орбитами, между которыми совершают переход электроны. Теория Бора, опубликованная в 1913 г., принесла ему известность; его модель атома стала известна как атом Бора.
Немедленно оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете – пост, который Бор занимал с 1914 по 1916 г. В 1916 г. он занял пост профессора, созданный для него в Копенгагенском университете, где он продолжал работать над строением атома. В 1920 г. он основал Институт теоретической физики в Копенгагене; за исключением периода второй мировой войны, когда Бора не было в Дании, он руководил этим институтом до конца своей жизни. Под его руководством институт сыграл ведущую роль в развитии квантовой механики (математическое описание волновых и корпускулярных аспектов материи и энергии). В течение 20-х гг. боровская модель атома была заменена более сложной квантово-механической моделью, основанной главным образом на исследованиях его студентов и коллег. Тем не менее атом Бора сыграл существенную роль моста между миром атомной структуры и миром квантовой теории.
Бор был награжден в 1922 г. Нобелевской премией по физике «за заслуги в исследовании строения атомов и испускаемого ими излучения». При презентации лауреата Сванте Аррениус, член Шведской королевской академии наук, отметил, что открытия Бора «подвели его к теоретическим идеям, которые существенно отличаются от тех, какие лежали в основе классических постулатов Джеймса Клерка Максвелла». Аррениус добавил, что заложенные Бором принципы «обещают обильные плоды в будущих исследованиях».
Бор написал много работ, посвященных проблемам эпистемологии (познания), возникающим в современной физике. В 20-е гг. он сделал решающий вклад в то, что позднее было названо копенгагенской интерпретацией квантовой механики. Основываясь на принципе неопределенности Вернера Гейзенберга, копенгагенская интерпретация исходит из того, что жесткие законы причины и следствия, привычные нам в повседневном, макроскопическом мире, неприменимы к внутриатомным явлениям, которые можно истолковать лишь в вероятностных терминах. Например, нельзя даже в принципе предсказать заранее траекторию электрона; вместо этого можно указать вероятность каждой из возможных траекторий.
Бор также сформулировал два из фундаментальных принципов, определивших развитие квантовой механики: принцип соответствия и принцип дополнительности. Принцип соответствия утверждает, что квантово-механическое описание макроскопического мира должно соответствовать его описанию в рамках классической механики. Принцип дополнительности утверждает, что волновой и корпускулярный характер вещества и излучения представляют собой взаимоисключающие свойства, хотя оба эти представления являются необходимыми компонентами понимания природы. Волновое или корпускулярное поведение может проявиться в эксперименте определенного типа, однако смешанное поведение не наблюдается никогда. Приняв сосуществование двух очевидно противоречащих друг другу интерпретаций, мы вынуждены обходиться без визуальных моделей – такова мысль, выраженная Бором в его Нобелевской лекции. Имея дело с миром атома, сказал он, «мы должны быть скромными в наших запросах и довольствоваться концепциями, которые являются формальными в том смысле, что в них отсутствует столь привычная нам визуальная картина».
В 30-х гг. Бор обратился к ядерной физике. Энрико Ферми с сотрудниками изучали результаты бомбардировки атомных ядер нейтронами. Бор вместе с рядом других ученых предложил капельную модель ядра, соответствующую многим наблюдаемым реакциям. Эта модель, где поведение нестабильного тяжелого атомного ядра сравнивается с делящейся каплей жидкости, дало в конце 1938 г. возможность Отто Р. Фришу и Лизе Майтнер разработать теоретическую основу для понимания деления ядра. Открытие деления накануне второй мировой войны немедленно дало пищу для домыслов о том, как с его помощью можно высвобождать колоссальную энергию. Во время визита в Принстон в начале 1939 г. Бор определил, что один из обычных изотопов урана, уран-235, является расщепляемым материалом, что оказало существенное влияние на разработку атомной бомбы.
В первые годы войны Бор продолжал работать в Копенгагене, в условиях германской оккупации Дании, над теоретическими деталями деления ядер. Однако в 1943 г., предупрежденный о предстоящем аресте, Бор с семьей бежал в Швецию. Оттуда он вместе с сыном Оге перелетел в Англию в пустом бомбовом отсеке британского военного самолета. Хотя Бор считал создание атомной бомбы технически неосуществимым, работа по созданию такой бомбы уже начиналась в Соединенных Штатах, и союзникам потребовалась его помощь. В конце 1943 г. Нильс и Оге отправились в Лос-Аламос для участия в работе над Манхэттенским проектом. Старший Бор сделал ряд технических разработок при создании бомбы и считался старейшиной среди многих работавших там ученых; однако его в конце войны крайне волновали последствия применения атомной бомбы в будущем. Он встречался с президентом США Франклином Д. Рузвельтом и премьер-министром Великобритании Уинстоном Черчиллем, пытаясь убедить их быть открытыми и откровенными с Советским Союзом в отношении нового оружия, а также настаивал на установлении системы контроля над вооружениями в послевоенный период. Однако его усилия не увенчались успехом.
После войны Бор вернулся в Институт теоретической физики, который расширился под его руководством. Он помогал основать ЦЕРН (Европейский центр ядерных исследований) и играл активную роль в его научной программе в 50-е гг. Он также принял участие в основании Нордического института теоретической атомной физики (Нордита) в Копенгагене – объединенного научного центра Скандинавских государств. В эти годы Бор продолжал выступать в прессе за мирное использование ядерной энергии и предупреждал об опасности ядерного оружия. В 1950 г. он послал открытое письмо в ООН, повторив свой призыв военных лет к «открытому миру» и международному контролю над вооружениями. За свои усилия в этом направлении он получил первую премию «За мирный атом», учрежденную Фондом Форда в 1957 г. Достигнув 70-летнего возраста обязательной отставки в 1955 г., Бор ушел с поста профессора Копенгагенского университета, но оставался главой Института теоретической физики. В последние годы своей жизни он продолжал вносить свой вклад в развитие квантовой физики и проявлял большой интерес к новой области молекулярной биологии.
Человек высокого роста, с большим чувством юмора, Бор был известен своим дружелюбием и гостеприимством. «Доброжелательный интерес к людям, проявляемый Бором, сделал личные отношения в институте во многом напоминающими подобные отношения в семье», – вспоминал Джон Кокрофт в биографических мемуарах о Боре. Эйнштейн сказал однажды: «Что удивительно привлекает в Боре как ученом-мыслителе, так это редкий сплав смелости и осторожности; мало кто обладал такой способностью интуитивно схватывать суть скрытых вещей, сочетая это с обостренным критицизмом. Он, без сомнения, является одним из величайших научных умов нашего века». Бор умер 18 ноября 1962 г. в своем доме в Копенгагене в результате сердечного приступа.
Бор был членом более двух десятков ведущих научных обществ и являлся президентом Датской королевской академии наук с 1939 г. до конца жизни. Кроме Нобелевской премии, он получил высшие награды многих ведущих мировых научных обществ, включая медаль Макса Планка Германского физического общества (1930) и медаль Копли Лондонского королевского общества (1938). Он обладал почетными учеными степенями ведущих университетов, включая Кембридж, Манчестер, Оксфорд, Эдинбург, Сорбонну, Принстон, Макгил, Гарвард и Рокфеллеровский центр.
БУНЗЕН (Bunsen), Роберт Вильгельм
31 марта 1811 г. – 16 августа 1899 г.
Немецкий химик Роберт Вильгельм Бунзен родился в Гёттингене в семье профессора университета. В 1828 г. он поступил в Гёттингенский университет, где изучал химию, физику, геологию, минералогию, ботанику, анатомию и математику. В возрасте 20 лет Бунзен окончил университет, получив степень доктора за создание гигрометра. Во время путешествия по Европе в 1832–1833 гг. он познакомился со многими знаменитыми химиками своего времени, посетил промышленные предприятия, прослушал курс лекций в Политехнической школе в Париже. В 1833 г. Бунзен стал приват-доцентом Гёттингенского университета, в 1836 г. – преподавателем химии в Высшей промышленной школе в Касселе.
Здесь Бунзен начал большой цикл работ по изучению органических соединений мышьяка, прежде всего арсинов. Он тетраметилдиарсин и установил формулу сложного радикала какодила [(CH3)2As–]; эта работа Бунзена подкрепила представления о сложных радикалах как составных частях органических соединений, послужив вместе с работами Ж.Гей-Люссака по изучению циана и Ю.Либиха и Ф.Вёлера по исследованию соединений бензола основой теории радикалов. Бунзен исследовал и другие мышьяковистые органические вещества. Во время одного из опытов с какодилцианидом произошёл взрыв, что едва не стоило учёному жизни; Бунзен отравился ядовитыми парами и ослеп на один глаз, в который попал осколок стекла.
В 1839 г. Бунзен был приглашён в Марбургский университет на должность профессора химии и директора химического института. В Марбурге Бунзен занялся исследованиями в области электрохимии, а также изучением реакций в газовых смесях. В 1841 г. он изобрёл угольно-цинковый гальванический элемент («элемент Бунзена»), имевший наибольшую электродвижущую силу из всех известных тогда химических источников тока (~ 1,7 В). С помощью батареи, составленной из таких элементов, Бунзен получил чистые хром и марганец электролизом растворов их хлоридов, из расплавов хлоридов выделил магний (1852), алюминий, натрий, кальций (1854–1855).
В 1851 г. Бунзен был приглашён в университет Бреслау (ныне Вроцлав, Польша), но уже в 1852 г. переходит в Гейдельбергский университет. Здесь Бунзен совместно с Г.Кирхгофом в 1854 г. начал изучение спектров пламени, окрашенного парами разных металлических солей. В 1860 г. учёные опубликовали свою совместную работу, где дали описание первого спектрографа и обосновали возможность обнаружения с его помощью неизвестных элементов. Эти исследования привели к созданию метода спектрального анализа, с помощью которого Бунзен и Кирхгоф открыли два новых элемента, содержащихся в водах соляных источников: цезий (1860) и рубидий (1861).
Большую известность получили работы также Бунзена по фотохимии, которые он выполнил совместно с английским химиком Г.Роско (1855–1863). Учёные исследовали действие солнечного света на смесь водорода и хлора, превращавшихся в хлороводород, а в 1862 г. ими был сформулирован количественный закон фотохимии, согласно которому количество фотопродукта определяется произведением интенсивности падающего света на время его воздействия на вещество (закон Бунзена – Роско).
Кроме того, Бунзен отыскал противоядие против мышьяковистой кислоты (1834), изучал химию доменного процесса, разработал методы газового анализа (1845). Будучи искусным экспериментатором, он изобрёл много лабораторных приборов: газовую горелку (горелка Бунзена), водоструйный насос, ледяной калориметр, паровой калориметр, фотометр с масляным пятном. Многие изобретенные им приборы можно и сейчас найти в любой химической лаборатории. Лаборатория Бунзена в Гейдельберге, подобно лаборатории Либиха в Гиссене, стала научной школой для многих молодых химиков, ставших впоследствии знаменитыми учеными: Г.Роско, Э.Эрленмейер, Л.Мейер, А.Байер, Д.Менделеев, Дж.Тиндаль и др.
В 1889 г. Бунзен вышел в отставку и посвятил себя занятиям геологией (ещё в 1848 он провел несколько месяцев в Исландии, где изучал гейзеры и дал объяснение этому природному явлению). Бунзен был одним из великих исследователей и педагогов XIX века. Своими исследованиями в области органической, физической, аналитической, и неорганической химии Бунзен внёс огромный вклад в развитие химических знаний, предлагая повсюду новые, оригинальные методы.
Дата добавления: 2015-04-15; просмотров: 1287;