Объемные насосы
Объемные насосы – насосы, в которых перемещение жидкости (или газа) осуществляется в результате периодического изменения объема рабочей камеры. К ним относятся: поршневые насосы, пластинчатые, шестеренчатые, водокольцевые.
Поршневые насосы (рис. 2.3). В поршневых насосах рабочий орган (поршень) совершает в цилиндре возвратно-поступательное движение, сообщая перекачиваемой жидкости энергию.
Подача Q, м3/с, насоса определяется по формуле
Q = (2.10)
где d – диаметр поршня, м; S – ход поршня, м; n – частота перемещения поршня, с-1.
Поршневые насосы обладают рядом достоинств. Они могут перекачивать различные жидкости, создавая большие напоры (до 15 МПа), обладают хорошей всасывающей способностью (до 7 м) и высоким КПД
η = 0,75–0,85.
Их недостатками являются: тихоходность, неравномерность подачи жидкости и невозможность ее регулировать.
Поршневые насосы применяют для заполнения огнетушителей, газовых баллонов, их испытаний и т.д.
Аксиально-поршневые насосы (рис. 2.4). Несколько поршневых насосов 2 размещены в одном барабане 3, вращающемся на оси распределительного диска 1. Штоки поршней 4 шарнирно закреплены на диске, вращающемся на оси 5. При вращении вала 6 поршни перемещаются в осевом направлении и одновременно вращаются с барабаном.
Эти насосы применяются в гидравлических системах и перекачивают масла.
В распределительном диске 7 выполнены два серповидных окна. Одно из них соединено с масляным баком, а второе с магистралью, в которую подается масло.
За один оборот вала барабана каждый поршень совершает ход
вперед и назад (всасывание и нагнетание).
Подача насоса определяется
по формуле
(2.11)
где Dб – диаметр барабана, м; d – диаметр поршня, м; i – число поршней;
n – скорость вращения вала, об/мин.
Достоинством насосов является равномерность подачи жидкости, высокое развиваемое давление (40–50 МПа) и КПД (η)= 0,85–0,9.
В системах управления автолестниц и подъемников насосы используются и как гидромоторы и как гидронасосы.
Поршневые насосы двойного действия. Насосы этого типа применяются в качестве вакуумных насосов на ряде пожарных насосов, выпускаемых иностранными фирмами. Принципиальная схема такого насоса представлена на рис. 2.5. Поршни насоса 5 объединены болтовым соединением 3 в единое целое. Они перемещаются смонтированным на оси 2 эксцент-
риком 1 посредством ползуна 4.
Частота вращения валика эксцентрика одинакова с частотой вращения вала насоса. Вал эксцентрика приводится во вра-
щение клиновым ремнем от ко-
робки отбора мощности. При
вращении эксцентрика 1 ползу-
ны 4 воздействуют на поршни
5. Они совершают возвратно-
поступательное движение. В
положении, указанном на ри-
сунке, левый поршень будет
сжимать воздух, ранее посту-
пивший в камеру. Сжатый воз-
дух преодолеет сопротивление
манжеты 7 и будет удаляться
через патрубок 6 в атмосферу.
Синхронно с этим в правой камере будет создаваться разрежение. При этом будет преодолено сопротивление первой малой манжеты 8. В пожарном насосе будет создаваться вакуум, он постепенно заполняется водой. При поступлении воды в вакуумный насос он отключается.
За каждую половину оборота эксцентрика поршни совершают ход, равный 2е. Тогда подача насоса, м3/мин, может быть вычислена по формуле
(2.12)
где d – диаметр цилиндра, м; е – эксцентриситет, м; n – частота вращения валика, об/мин.
При частоте вращения, равной 4200 об/мин, насос обеспечивает заполнение пожарного насоса с глубины всасывания 7,5 м за время меньше 20 с.
Шестеренчатый насос (рис. 2.6) состоит их корпуса 2 и зубчатых колес 1. Одно из них приводится в движение, второе в зацеплении с первым свободно вращается на оси. При вращении шестерен жидкость перемещается впадинами 3 зубьев по окружности корпуса.
Они характеризуются постоянной подачей жидкости и работают в диапазоне 500–2500 об/мин. Их КПД в зависимости от частоты вращения и давления составляет
0,65–0,85. Они обеспечивают глубину всасывания до 8 м и могут развивать напор более 10 МПа. Используемый в пожарной технике насос НШН-600 обеспечивает подачу Q = 600 л/мин и развивает напор Н до 80 м при n = 1500 об/мин.
Подача насоса определяется по формуле
(2.13)
где R и r – радиусы шестерен по высоте и впадинам зубьев, см; b – ширина шестерен, см; n – частота вращения вала, об/мин; η – КПД.
В этих насосах предусматривается перепускной клапан. При избыточном давлении через него перетекает жидкость из полости нагнетания во всасывающую полость.
Пластинчатый насос (шиберный) насос (рис. 2.7) состоит из корпуса с запрессованной с него гильзой 1. В роторе 2 размещены стальные пластины 3. Приводной шкив закреплен на роторе 2.
Ротор 2 размещен в гильзе 1 эксцентрично. При его вращении лопатки 3 под действием центробежной силы прижимаются к внутренней поверхности гильзы, образуя замкнутые полости. Всасывание происходит за счет изменения объема каждой полости при ее перемещении от всасывающего отверстия к выпускному.
Подача, см3/мин, пластинчатых насосов равна
, (2.14)
где n – частота вращения ротора, об/мин; r2c и r2p – радиусы статора и ротора, см; b – ширина пластины.
Пластинчатые насосы могут созда-
вать напоры 16–18 МПа, обеспечивают
забор воды с глубины до 8,5 м при КПД,
равном 0,8–0,85.
Смазка вакуумного насоса осуществляется маслом, которое подается в его всасывающую полость из масляного бака вследствие разрежения, создаваемого самим насосом.
Водокольцевой насос может использоваться как вакуумный насос. Принцип его работы легко уяснить из рис. 2.8. При вращении ротора 1 с лопатками жидкость под влиянием центробежной силы прижимается к внутренней стенке корпуса насоса 4. При повороте ротора от 0 до 180о рабочее пространство 2 будет увеличиваться, а затем уменьшаться. При увеличении рабочего объема образуется вакуум и через отверстие канала всасывания 3 будет всасываться воздух. При уменьшении объема он будет выталкиваться через отверстие канала нагнетания 5 в атмосферу.
Водокольцевым насосом может создаваться вакуум до 9 м вод.ст. Этот насос имеет очень низкий КПД, равный 0,2-0,27. Перед началом работы в него необходимо заливать воду – это его существенный недостаток.
Дата добавления: 2015-04-11; просмотров: 1227;