Автоассоциативные сети
Весьма общим подходом к понижению размерности является использование нелинейных автоассоциативных сетей. В общем случае они должны содержать как минимум три скрытых слоя нейронов. Средний слой - узкое горло, будет в результате обучения выдавать сжатое представление данных . Первый скрытый слой нужен для осуществления произвольного нелинейного кодирования, а последний - для нахождения соответствующего декодера (Рисунок 16).
Рисунок 16. Понижение размерности с помощью автоассоциативных сетей. Минимизация ошибки воспроизведения сетью своих входов эквивалентна оптимальному кодированию в узком горле сети.
Задачей автоассоциативных сетей, как уже говорилось, является воспроизведение на выходе сети значений своих входов. Вторая половина сети - декодер - при этом опирается лишь на кодированную информацию в узком горле сети. Качество воспроизведения данных по их кодированному представлению измеряется условной энтропией . Чем она меньше, тем меньше неопределенность, т.е. лучше воспроизведение. Нетрудно показать, что минимизация неопределенности эквивалентна максимизации энтропии кодирования:
.
Действительно, механическая процедура кодирования не вносит дополнительной неопределенности, так что совместная энтропия входов и их кодового представления равна энтропии самих входов и, следовательно, не зависит от параметров сети.
Привлекательной чертой такого подхода к сжатию информации является его общность. Однако многочисленные локальные минимумы и трудоемкость обучения существенно снижают его практическую ценность.
Более компактные схемы сжатия обеспечивает метод предикторов.
Дата добавления: 2015-04-10; просмотров: 1681;