Приемников излучения

В основе работы большинства фотоприемников лежит принцип внутреннего фотоэффекта или фотопроводимости. При освещении полупроводника светом из области собственного поглощения в нем происходит генерация электронно-дырочных пар, что увеличивает проводимость на величину

 

∆σ = q(μn∆n + μp∆p). (6.1)

 

В стационарных условиях концентрация неравновесных носителей равна ∆n = k∙β∙Ф∙τn, ∆p = k∙β∙Ф∙τp, где Ф – интенсивность света, k – коэффициент поглощения, β – квантовый выход, τn и τp – эффективное время жизни электронов и дырок. Тогда

 

∆σ = q∙k∙β∙Ф∙(μnτn + μpτp). (6.2)

 

Рассмотрим собственное поглощение. Если энергия кванта hν превышает ширину запрещенной зоны Eg, то коэффициент поглощения k резко увеличивается с ростом hν. Зависимость k(hν) для Ge приведена на рис. 6.1. Поглощение начинается при hν > 0,65 эВ сначала за счет непрямых переходов электронов из валентной зоны в минимум зоны проводимости в направлении [111]. При hν > 0,8 эВ начинаются прямые переходы. Это соответствует резкому росту k, так как вероятность прямых переходов выше, чем непрямых.

 

Рис. 6.1. Зависимость коэффициента поглощения от энергии квантов для Ge при 20 °С

 

Зависимость β(hν) для Ge приведена на рис. 6.2. При hν < Eg β → 0, при hν > Eg β = 1. При больших энергиях кванта (для Gе hν > 3 эВ) электрон, перешедший в зону проводимости, обладает энергией, превышающей Еg, и он может передать часть энергии электрону из валентной зоны и перевести его в зону проводимости. Возникает процесс умножения электронов, при котором β > 1.

 

 

Рис. 6.2. Зависимость квантового выхода от энергии квантов для Ge при 27 °С

В соответствии с приведенными зависимостями при hν>Eg происходит и рост фотопроводимости с увеличением энергии света (рис. 6.3).

 

 

Рис. 6.3. Спектральная характеристика фотопроводимости

 

Небольшая фотопроводимость при hν < Eg происходит из-за тепловых колебаний кристаллической решетки, которые приводят к флуктуации энергии электрона и величины Еg. Фотопроводимость с ростом hν достигает максимума, а затем падает. Причина заключается в уменьшении эффективного времени жизни неосновных носителей с ростом k. Эффективное время жизни неосновных носителей

 

= + , (6.3)

 

где τ0 – объемное время жизни; τs – время жизни, обусловленное рекомбинацией на поверхности.

На поверхности скорость рекомбинации выше, чем в объеме. При увеличении поглощения с ростом hν растет и поверхностная рекомбинация, что приводит к уменьшению фотопроводимости. Длинноволновый край фотопроводимости определяется из условия

 

λ(мкм) = 1,24/Еg(эВ). (6.4)

 

Зависимость фотопроводимости от интенсивности света Ф при малых интенсивностях линейна. С ростом Ф происходит изменение заполнения рекомбинационных центров, и время жизни неравновесных носителей изменяется. В зависимости от свойств рекомбинационных центров и температуры τ может как возрастать, так и убывать. Обычно время жизни убывает, поэтому рост фототока замедляется, а люкс-ампер-ная характеристика становится сублинейной – рис. 6.4.

 

 

Рис. 6.4. Зависимость фототока от интенсивности света

фоторезистора из сульфида свинца

 

 








Дата добавления: 2015-02-16; просмотров: 822;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.