И транзисторов
Термодиоды и термотранзисторы находят применение в датчиках температуры, работающих в диапазоне от –80 до +150 ºС. Верхняя граница температурного диапазона ограничивается тепловым пробоем p-n перехода и для некоторых кремниевых датчиков достигает 500 ºС. Нижняя граница температурного диапазона определяется уменьшением концентрации основных носителей и может достигать для датчиков из Ge – (240 – 260) ºС , из Si – (–200 ºС).
Связь между током I через p-n переход и падением напряжения U на нем определяется уравнением
I = I0e-B/T(eqU/(kT) – 1), (3.7)
где I0e-B/T = Iнас – ток насыщения, зависящий от температуры Т; I0 – ток насыщения при Т → ∞; q – заряд электрона; k – постоянная Больцмана.
Это уравнение определяет ток через p-n переход как при прямом, так и при обратном смещении. Учитывая, что при Т = 300 К kT/q = 26 мВ, при напряжениях на переходе > 26 мВ можно пользоваться приближенными формулами для прямого и обратного токов
Iпр = I0 e-B/T eqU/(kT) , Iобр = I0e-B/T. (3.8)
Прямой и обратный токи являются функциями температуры, однако для измерения температуры чаще используются открытые p-n переходы. Падение напряжения на открытом переходе при токе I через переход определяется формулой
U = [kT ln(I/I0) + kB]/q, (3.9)
из которой видно, что U линейно зависит от Т и уменьшается с увеличением температуры (I0 >> I). Температурная чувствительность p-n перехода по напряжению составляет 1,5 – 2,5 мВ/К. Сравнивая эту величину с чувствительностью термопар, видно, что p-n переходы в 100 раз чувствительнее термопар. Используемые для измерения температуры элементы – диоды и транзисторы, включенные по схеме диода (коллектор замкнут на базу), питаются постоянным током I в прямом направлении, напряжение U на выводах, зависящее от температуры, является выходной электрической величиной датчиков, изображенных на рис. 3.1.
Микроэлектронная технология дает возможность изготовить оба транзистора датчика, изображенного на рис. 3.1,в , в виде интегральной схемы на одном кристалле.
Дата добавления: 2015-02-16; просмотров: 914;