Электронные вычислительные машины

Электронные вычислительные машины (ЭВМ) представляют собой устройство, предназначенное для выполнения вычислительных операции по заданной программе.

Современная электронная вычислительная машина – это сложнейший комплекс устройств, восхищающий своим технологическим совершенством и разнообразием физических принципов работы.

Вычислительные машины в зависимости от способа представления информации подразделяются на две большие группы: вычислительные машины непрерывного действия, или аналоговые вычислительные машины (АВМ), и вычислительные машины дискретного действия, или цифровые вычислительные машины (ЦВМ).

В АВМ входные, выходные и промежуточные величины представляются в виде токов или напряжений, значения которых в определенном масштабе соответствуют числом.

Математические действия над числами заменяются в АВМ различными преобразованиями электрических токов или напряжений.

Подлинный прогресс науки, называемой математической логикой, был достигнут в середине XIX в. Прежде всего благодаря труду английского логика Джорджа Буля «Математический анализ логики». Он перенес на логику законы и правила алгебраических действий, ввел логические операции, предложил способ записи высказываний в символической форме.

Современная математизированная формальная логика представляет собой обширную научную область и находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (анализ и синтез автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Формы мышления.Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.

Логика- это наука о формах и способах мышления.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, высказывание и умозаключение.

Понятие выделяет существенные признаки объекта, которые отличают его от других объектов. Объекты, объединенные понятием, образуют некоторое множество. Например, понятие «компьютер» объединяет множество электронных устройств, которые предназначены для обработки информации и обладают монитором и клавиатурой. Даже по этому короткому описанию компьютер трудно спутать с другими объектами, например с механизмами, служащими для перемещения по дорогам и хранящимися в гаражах, которые объединяются понятием «автомобиль».

Понятие- это форма мышления, фиксирующая основные, существенные признаки объекта. Понятие имеет две стороны: содержание и объем. Содержания понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов. Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений). Высказывание строится на основе понятий и по форме является повествовательным предложением. Высказывание может быть ложным или истинным. Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношение реальных вещей. Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности.

Высказывание – это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо ложно, либо истинно.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (высказываний), получать заключение, то есть новое знание. Примером могут быть геометрические доказательства.

Умозаключение – это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

Алгебра логики (раздел высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.

В алгебре логики над высказываниями можно производить различные операции (подобно тому в алгебре чисел определены операции сложения, деления, возведения в степень над действительными числами).

Обозначать высказывания будем прописными буквами. Если высказывание А истинное, то будем писать «А=1» и говорить «А истинно». Если высказывание А ложное, то будем писать «А=0» и говорить «А ложно».

Для структурно-функционального описания логических схем, составляющих основу любого дискретного вычислительного устройства, ЭВМ или ВС в целом, используется аппарат булевой алгебры, созданной в 1854 г. Дж. Булем как попытка изучения логики мышления математическими методами. Впервые практическое применение булевой алгебры было сделано К. Шенноном в 1938 г. для анализа и разработки релейных переключательных сетей, результатом чего явилась разработка метода представления любой сети, состоящей из совокупности переключателей и реле, математическими выражениями и принципов их преобразования на основе правил булевой алгебры. Ввиду наличия аналогий между релейными и современными электронными схемами аппарат булевой алгебры нашел широкое применение для анализа, описания и проектирования последних. Использование булевой алгебры позволяет не только более удобно оперировать с булевыми выражениями (представляющими те или иные электронные узлы), чем над схемами или логическими диаграммами, но и на формальном уровне путем эквивалентных преобразований и базовых теорем упрощать их, давая возможность создавать экономически и технически более совершенные электронные устройства любого назначения. Являясь основным средством анализа, разработки и описания структурно-функциональной архитектуры современной ВТ, булева алгебра является обязательной составной частью курса “компьютерной информатики”, а также целого ряда разделов вычислительных наук.








Дата добавления: 2015-02-16; просмотров: 772;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.