Скорость. Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения

 

Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор г0 (рис. 3). В течение малого промежутка времени Dt точка пройдет путь Ds и получит элементарное (бесконечно малое) перемещение Dг.

 

 

 

Рис. 3

 

Вектором средней скорости <v> называется отношение приращения Dг радиуса-вектора точки к промежутку времени Dt:

(2.1)

Направление вектора средней скорости совпадает с направлением Dг. При неограниченном уменьшении Dt средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:

 

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая совпадает с касательной, то вектор скорости v направлен по касательной к траектории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dг|, поэтому модуль мгновенной скорости

 

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

(2.2)

При неравномерном движении модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной <v> — средней скоростью неравномерного движения:

 

Из рис. 3 вытекает, что <v> > |<r>|, так как Ds >|Dг|, и только в случае прямолинейного движения

Если выражение ds=vdt (см. формулу (2.2)) проинтегрировать по времени в пределах от t до t+Dt, то найдем длину пути, пройденного точкой за время Dt:

(2.3)

В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t\ до fa, дается интегралом

 








Дата добавления: 2015-02-13; просмотров: 697;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.