ОТНОШЕНИЯ МЕЖДУ СУЖДЕНИЯМИ ПО ЗНАЧЕНИЯМ ИСТИННОСТИ

 

Суждения, как и понятия, делятся на сравнимые (имеют об­щий субъект или предикат) и несравнимые. Сравнимые суждения делятся на совместимые и несовместимые.

В математической логике два высказывания р и q называются несовместимыми, если из истинности одного из них необходимо следует ложность другого (т. е. p и q никогда не могут оказаться одновременно истинными). «Это понятие легко распространить на любое число высказываний: высказывания р1 , р2 , ..., рn , называ­ются несовместимыми, если не может оказаться, что все они являются одновременно истинными»12.

Совместимые выражают одну и ту же мысль полностью или лишь в некоторой части. Отношения совместимости: эквивален­тность, логическое подчинение, частичное совпадение (субконтрарность). Совместимые эквивалентные суждения выражают од­ну и ту же мысль в различной форме («Юрий Гагарин — первый космонавт» и «Юрий Гагарин первым полетел в космос»). Субъ­ект здесь один и тот же, а предикаты различные по форме, но одинаковые по смыслу. В двух эквивалентных суждениях: «Миха­ил Шолохов — лауреат Нобелевской премии» и «Автор романа «Тихий Дон» — лауреат Нобелевской премии» — одинаковыми являются предикаты, а различными по форме выражения, но тождественными понятиями — субъекты. Если два высказыва­ния эквивалентны, то невозможно, чтобы одно из них было истинным, а другое ложным.

В сочинении, при заучивании материала, в устном изложении текста, при переводе с одного языка на другой — всюду учащиеся должны уметь кратко и корректно излагать свои мысли. А. П. Чехов дал такое сравнение: «Краткость — сестра таланта».

Совместимые суждения, находящиеся в отношении логичес­кого подчинения, имеют общий предикат; понятия, выражающие субъекты двух таких суждений, также находятся в отношении логического подчинения. Отношения между суждениями по ис­тинности принято схематически изображать в виде «Логического квадрата» (рис. 40).

Возьмем суждение «Все учащиеся нашей группы — спортс­мены». Это суждение А общеутвердительное (подчиняющее). Су­ждение I — «Некоторые учащиеся нашей группы — спортсме­ны» — подчиненное.

Для суждении А и I, а также Е и О, находящихся в отношении логического подчинения, истинность общего суждения определя­ет истинность частного, подчиненного суждения. Но ложность общего суждения оставляет частное суждение неопределенным. Истинность частного суждения оставляет общее суждение неоп­ределенным (при нарушении этого правила может возникнуть логическая ошибка — «поспешное обобщение»). Ложность част­ного суждения обусловливает ложность общего суждения. Если истинно суждение «Ни одна трапеция не является сферическим телом», то будет истинным и суждение «Некоторые трапеции не являются сферическими телами». Умозаключение от общего суж­дения к логически подчиненному ему частному суждению всегда будет давать истинное заключение.

В отношении частичного совпадения (субконтрарности) нахо­дятся два таких совместных суждения I и О, которые имеют одинаковые субъекты и одинаковые предикаты, но различаются по качеству. Например, I — «Некоторые свидетели дают истин­ные показания» и О — «Некоторые свидетели не дают истинных показаний». Оба они одновременно могут быть истинными, но не могут быть одновременно ложными. Если одно из них ложно, то другое обязательно истинно. Но если одно из них истинно, то другое неопределенно (оно может быть либо истинным, либо ложным). Например, если истинно суждение I — «Некоторые книги в этой библиотеке — букинистические», то суждение О — «Некоторые книги в этой библиотеке не являются букинистичес­кими» — будет неопределенным, т. е. оно может быть как ис­тинным, так и ложным.

Отношения несовместимости: противоположность, противо­речие. По логическому квадрату в отношении противополож­ности (контрарности) находятся суждения А и Е. Два суждения: А — «Все люди трудятся добросовестно» и Е — «Ни один чело­век не трудится добросовестно» — оба ложны. Но А и Е не могут быть оба истинными. Если одно из противоположных суждений истинно, то другое будет ложным.

Итак, из истинности одного из противоположных суждений вытекает ложность другого, но ложность одного из них оставля­ет другое суждение неопределенным.

В отношении противоречия (контрадикторности) находятся суждения А и О, а также Е и I. Два противоречащих суждения не могут быть одновременно истинными и одновременно ложными. Если в настоящее время истинно суждение I — «Некоторые лет­чики — космонавты», то ложным будет суждение «Ни один лет­чик не является космонавтом».

Закономерности, выражающие отношения между суждениями по истинности, имеют большое познавательное значение, так как они помогают избежать ошибок при непосредственных умозак­лючениях, производимых из одной посылки (одного суждения).

 








Дата добавления: 2014-12-08; просмотров: 934;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.