Математические подробности: как проверить умение статистически
Подробное объяснение того, как статистически показать умение, не является целью этой книги. Однако простая иллюстрация будет полезна. Используем пример со средним показателем отбитых мячей, равным 0,260; при этом стандартное отклонение среди игроков за любой год составляет 0,020. Иными словами, средний показатель 0,300 приводит к тому, что 2 SD игрока [(0,300 – 0,260) / 0,020] становятся выше среднего за один отдельный год. Если игрок имеет средний показатель 0,280 в течение 10 сезонов, является ли он умелым? «Стандартная ошибка» случайных бьющих в бейсбол, имеющих ежегодное стандартное отклонение в 0,020 за 10-летний период, составляет 0,020 / √10 = 0,0063. Иными словами, в мире случайностей ежегодное стандартное отклонение в 20 пунктов превращается в стандартное отклонение в 6,3 пункта за 10 лет. Разница между эффективностью игрока и средним значением равна 0,020; разделив ее на стандартную ошибку 0,0063, получим значение z, равное 3,17. Поскольку мы рассматриваем результативность за 10-летний период, то имеем 9 «степеней свободы». Значение z и степени свободы вводятся в распределение функции t в наших электронных таблицах, и получается значение р, равное 0,011. Иными словами, в мире «случайного отбивания мяча» существует 1,1 % вероятности того, что данный игрок покажет средний результат 0,280 за 10 сезонов.
Будем ли мы считать такого игрока умелым, зависит от того, рассматриваем ли мы его «в выборке» или «вне выборки». «В выборке» означает, что мы выбрали его из большого количества игроков, – скажем, из всей команды – постфактум. В этом случае он, вероятно, не является умелым, поскольку нет ничего необычного в том, что на 1 из 30 человек распространяется случайное событие с вероятностью 1,1 %. С другой стороны, если его результативность измеряется «вне выборки», то есть мы выбрали только его из всей команды, то он, вероятно, является умелым, поскольку мы будем иметь лишь один шанс при вероятности 1,1 % в мире случайных отбиваний мячей. Чуть более сложная формулировка используется при оценке управляющих активами. Необходимо очень четко проводить различие между эффективностью «в выборке» и «вне выборки». Не следует удивляться, если будет выбран один самый эффективный управляющий из 500 и его значение р окажется 0,001. Однако если он будет выбран заранее и значение его эффективности р окажется 0,001 постфактум, то он, вероятно, является умелым.
Табл. 6.1. Последовательная эффективность наиболее эффективных фондов, 1970–1998 гг.
Источник: DFA/Micropal/Standard and Poor’s.
Однако проходит время, и законы случайности в итоге ликвидируют отставание от этих людей. Сотни тысяч инвесторов обнаруживают, что их прекрасный управляющий оказался очередной волосатой обезьяной. По сути, если учесть особо искаженную логику финансовых потоков, очень мало кому из инвесторов удается получить впечатляющую первоначальную доходность «ведущих» фондов. И что хуже всего, большой приток активов склонен подавлять будущую доходность из-за так называемых издержек рыночного влияния, которые описаны ниже. Высокие первоначальные доходы неизбежно привлекают большое количество инвесторов, которые в дальнейшем при благоприятном стечении обстоятельств получают лишь средние результаты.
Дата добавления: 2014-12-05; просмотров: 918;