Портфель, включающий более двух неидеально коррелированных активов
Приведенные выше модели полезны для демонстрации влияния диверсификации на риск и доходность двух похожих активов (пример 2) и двух различных активов (пример 1) с нулевой корреляцией.
К сожалению, данные примеры – не более чем полезные иллюстрации теоретической пользы диверсифиции портфелей. В реальном мире инвестиций мы должны иметь дело с комбинациями десятков типов активов, у каждого из которых различные доходность и риск. Хуже того, доходность активов лишь изредка бывает абсолютно некоррелированной. Еще хуже то, что риски, доходность и корреляция этих активов значительно колеблются во времени. Для понимания реальных портфелей потребуются гораздо более сложные методы.
До сих пор мы имели дело с портфелями, состоящими лишь из двух некоррелированных компонентов. Два некоррелированных актива могут быть представлены четырьмя временными периодами, как при подбрасывании монеты дядюшкой Фредом, три актива – восемью периодами, четыре актива – шестнадцатью периодами и т. д. Однако в реальном мире инвестиций трудно найти два актива, которые не были бы коррелированы, и практически невозможно найти три. Абсолютно невозможно найти больше трех взаимно некоррелированных активов. Причина проста. Портфель из двух активов имеет только одну корреляцию. Три актива имеют три корреляции, а у четырех активов – шесть корреляций. (По этой же причине в крупных компаниях больше беспорядка, чем в более мелких. Если в офисе работают три человека, то существует три межличностные связи; если в нем 10 человек, то связей уже 45.)
Реальные активы почти всегда неидеально скоррелированы. Иными словами, доходность выше средней одного из активов некоторым образом может быть связана с доходностью выше средней другого актива.
Степень корреляции выражается коэффициентом корреляции. Его значение варьируется от –1 до +1. Коэффициент корреляции идеально коррелированных активов составляет +1, а некоррелированные активы имеют коэффициент 0. Идеально обратно (или отрицательно) скоррелированные активы имеют коэффициент –1. Самый простой способ понять это – составить графики доходности двух активов за ряд периодов, как это сделано на рис. 3.3, 3.4 и 3.5.
На каждом рисунке представлена доходность за 288 месячных периодов для каждой пары активов за 24-летний период с января 1975 г. по декабрь 1998 г. Каждая точка на графике представляет доходность за один из этих месяцев; доходность первого актива представлена по оси х (горизонтальной), а на второй актив – по оси у (вертикальной). Если активы идеально скоррелированы, то они все попадут на прямую линию. (При положительной корреляции линия пройдет из левого нижнего угла в правый верхний; при отрицательной корреляции – из левого верхнего угла в правый нижний.) При отсутствии корреляции будет наблюдаться широкий разброс.
На рис. 3.3 представлена ежемесячная доходность акций S&P 500 по сравнению с доходностью акций мелких компаний США за 1975–1998 гг. Большинство точек лежит почти на прямой линии; низкая доходность одного актива неизбежно связана с низкой доходностью другого актива. Коэффициент корреляции равен 0,777, весьма высокий для этих двух активов. Этот график показывает, что добавление акций мелких компаний США в портфель, состоящий из акций крупных компаний США, снижает риск не очень значительно, поскольку низкая доходность одного актива, по всей вероятности, связана с низкой доходностью другого актива.
Рис. 3.3. Акции S&P 500 / акции мелких компаний США, корреляция 0,777
На рис. 3.4 представлено два слабо коррелированных актива – акции крупных компаний США (индекс S&P 500) и акции крупных иностранных компаний (индекс EAFE). Хотя связь между этими активами не кажется слабой, она далека от совершенной. Коэффициент корреляции этой пары равен 0,483.
Рис. 3.4. Акции S&P 500 / акции EAFE, корреляция 0,483
Рис. 3.5. Акции мелких японских компаний / REIT, корреляция 0,068
Наконец, на рис. 3.5 представлено два очень слабо коррелированных актива (коэффициент корреляции 0,068): акции мелких японских компаний и REITs. Этот график представляет собой рассеянную диаграмму, в которой отсутствует видимая модель. Хороший или плохой результат по одному из этих активов ничего не говорит нам о результате по другому активу.
Дата добавления: 2014-12-05; просмотров: 856;