Camenes

А Все квадраты суть параллелограмм.

Е Ни один параллелограмм не есть треугольник.

Е Ни один треугольник не есть квадрат.

Характеристика фигур. Характеризуем в общих чертах все четыре фигуры силлогизма в отношенииих познавательного значения.

 

Фигура 1. В ней меньшая посылка утвердительная, а большая общая (sit minor, affirmans, пес major sit speciaiis). Эта фигура употребляется в тех случаях, когда нужно показать применение общих положений (аксиом, осново­положений, законов природы, правовых норм и т. п.) к част­ным случаям; это есть фигура подчинения.

Фигура 2. В этой фигуре одна из посылок должна быть отрицательной и большая посылка дол­жна быть общей (una negans esto, nec major sit speciaiis). Посредством этой фигуры отвергаются ложные де­дукции, или ложные подчинения. Например, кто-ни­будь утверждает относительно испытуемого газа, что он есть кислород. Нам стоит указать на какой-нибудь присущий кисло­роду признак, который не присущ испытуемому газу, для того чтобы убедиться в том, что это не есть кислород. Тогда у нас получится следующий силлогизм:

А Кислород поддерживает горение

Е Этот газ не поддерживает горения,

Е Этот газ не есть кислород.

Кто-нибудь утверждает, что данное лицо больно лихорадкой; утверждая это, он производит подчинение. Нам нужно отверг­нуть это подчинение. Тогда мы составляем следующий силло­гизм:

 

А Все больные лихорадкой испытывают жажду.

Е Этот больной не испытывает жажды.

Е Этот больной не болен лихорадкой.

Таким образом, по второй фигуре отвергаются ложные подчинения, и именно потому, что одна из посылок отрицательная. Юридические приговоры строятся по этой фигуре. Например:

А Этот смертельный удар нанесён человеком, обладающим огром­ной силой.

Е Обвиняемый не есть человек, обладающий огромной силой.

Е Обвиняемый не нанёс смертельного удара.

 

Фигура 3. В фигуре 3 меньшая посылка должна быть утвердительной, а заключение должно быть частным (sit minor af firmans, conclusio sit specialis). Поэтому в фигуре 3 обыкновенно отвергается мнимая Общность утвердительных и отрицательных суждений или доказывается исключение из об­щего положения. Положим, нам нужно доказать, что утверждение «все металлы тверды» допускает исключение, что оно не всеобще. Тогда мы строим силлогизм по фигуре 3:

E Ртуть не тверда.

А Ртуть есть металл.________

О Некоторые металлы не тверды.

Фигура 4 имеет искусственный характери обыкновенно не употребляется.

Характер посылок и заключений каждой фигуры может быть наглядно пред­ставлен, если мы буквы модусов каждой фигуры расположим по вертикальным линиям таким образом, что буквы больших посылок будут идти по горизон­тальной, буквы меньших посылок по второй горизонтальной и буквы заключе­ний по третьей горизонтальной.

bAr bAr A cEI A rEnt dA rl I fE rl O     Фигура 1 Все большие посылки общие Все меньшие посылки утвердительны
cE sAr E cAm Es trEs fEs tI nO bAr Ok O     Фигура 2 Все большие посылки общие Все заключения отрицательны Одна посылка всегда отрицательна
dA rAp tI dIs Am Is dA tIs I fE IAp tOp   bOk Ar dO fE rIs On Фигура 3 Все меньшие посылки утвердительны Все заключения частные

 

Вопросы для повторения

Чем обусловливается различие между фигурами силлогизма? Ка­кие существуют фигуры силлогизма и какое различие между ними? Перечислите модусы всех четырёх фигур. Какое различие, между фигурами в отношения познания?

 

Глава XV








Дата добавления: 2014-12-24; просмотров: 653;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.