Мониторинг технологического процесса и оборудования (СМТП).

Обеспечение конкурентоспособности на внутреннем и международном рынках продукции машино- и приборостроительных предприятий, выпускающих высокоточные детали и изделия для авиационной, автомобильной, судостроительной, электронной и другой техники, обусловлено качеством изготовления. Для обеспечения качества продукции и эффективности производства на предприятиях внедряются системы менеджмента качества продукции (МКП), одним из важнейших элементов которых являются системы мониторинга технологического процесса и оборудования (СМТП). Это обусловлено тем, что процессы механообработки лежат в основе изготовления указанных выше изделий, причем наиболее широко используются процессы резания на автоматизированных металлорежущих станках (МРС). Именно технологическая надежность станков определяет качество формообразования деталей,

Современный уровень требований к качеству изделий определяет необходимость применения станков с ЧПУ нового поколения, широкого использования методов и средств автоматизированного контроля и технической диагностики, микропроцессорных средств информационно-измерительной техники, новых методов сбора, обработки и использования информации о функционировании станков и параметрах технологического процесса (ТП) для принятия решения об управлении в соответствии с задачей системы мониторинга.

Создание эффективной СМТП предполагает решение целого комплекса взаимосвязанных задач, включающих организационное, научно-методическое, техническое, информационное и кадровое обеспечение с учетом особенностей конкретного производства. Системный подход к организации СМТП позволяет не только повысить качество изготовления деталей за счет управления процессом обработки и обслуживания МРС по реальному техническому состоянию, но и предупредить появление брака, т.е. снизить издержки производства.

Производство подшипников является одним из примеров, когда процессы обработки практически полностью определяют качество деталей, причем необходимо принимать во внимание как геометрические параметры точности поверхностей качения, так и физико-механические параметры их поверхностного слоя. Одним из процессов финишной обработки поверхностей качения деталей подшипников (колец и роликов) является шлифование на автоматизированных станках. Влияние ряда факторов, сопровождающих шлифование (теплофизических, динамических и других), приводит к снижению качества деталей и, соответственно, подшипников. Обеспечение качества формообразования деталей достигается путем управления процессом шлифования на основе контроля ряда параметров технологического процесса и оборудования (ТПО), в частности, параметров состояния станков, процесса обработки и деталей, а также накопления, обработки и анализа полученных данных для принятия управляющего решения, что и составляет собственно систему мониторинга.

Для построения системы многопараметрового контроля необходимо из всего комплекса факторов, влияющих на качество шлифования, выделить доминирующие. Одним из таких факторов является динамическое состояние станка, определяемое уровнем и частотным составом виброакустических (ВА) колебаний в узлах формообразующей подсистемы, которые служат обобщающими показателями его динамических характеристик, существенно влияющих на формирование некруглости, гранности и волнистости деталей и связанную с ними неоднородность физико-механических свойств поверхностей качения. В современных условиях производства снижение динамического качества станков за счет повышения уровня колебаний объясняется рядом причин эксплуатационного характера, в частности, недостаточным качеством наладки, технического обслуживания и ремонта. Снижение уровня вибраций достигается периодической подналадкой станка или корректировкой технологического режима. Для оперативной оценки динамического состояния станков при эксплуатации актуальна разработка методов автоматизированного контроля вибраций и обработки данных для принятия решения о подналадке станка или его ремонте. Для контроля качества деталей вместе с измерением традиционных макро- и микрогеометрических параметров точности дорожек качения целесообразно использовать дополнительный информационный канал, в частности, на основе автоматизированной системы вихретокового контроля (АСВК) качества поверхностного слоя шлифованных деталей.

При этом следует осуществить автоматизированное распознавание дефектов поверхностей качения (периодических и локальных) и их количественную оценку, а затем при сопоставлении оценок динамического состояния МРС с реальными параметрами качества деталей принять соответствующее решение об управлении процессом шлифования. Эффективность вихретокового контроля деталей подшипников и его интеграция в СМТП на практике рассматривались только в ограниченном числе работ, выполненных в СГТУ.

Особенностью процессов шлифования колец подшипников является применение активного контроля, обеспечивающего получение в первую очередь заданного размера. Возрастание требований к качеству обработки поверхностей качения обусловливает необходимость учета при управлении шлифованием не только величины снимаемого припуска, но и дополнительных параметров, в частности, скорости съема припуска и уровня вибраций при резании. Установленные критические значения этих параметров рассматриваются в качестве ограничений при обработке, что позволяет повысить стабильность геометрических параметров точности и практически исключить прижоги поверхностного слоя. Однако управление качеством колец при многопараметровом активном контроле и его интеграция в СМТП практически не рассматривались, за исключением нескольких работ сотрудников СГТУ, решавших частные задачи.

Технологическое обеспечение повышения качества изделий машиностроения на основе специальных покрытий"

В настоящее время вакуумные ионно-плазменные покрытия широко используется для повышения качества изделий в различных отраслях народного хозяйства. Это обусловлено тем, что наносимые покрытия обеспечивают качественно новую совокупность свойств и меру полезности изготавливаемых изделий. Композиция высоких технических и физико-механических свойств покрытий в сочетании со специальными свойствами основного материала изделий, при их рациональном подборе, в ряде случаев, могут обеспечивать принципиально новые свойства изделий и качество создаваемых на базе их технических систем и машин. Однако сейчас еще не в полной мере используется полный потенциал возможностей наносимых покрытий и изготавливаемых с их применением изделий. Это связано с тем, что не полностью изучены особенности применения различных видов, типов и вариантов покрытий в сочетании с различным материалом изделий. А также не исследованы достоинства применения комплексных технологий изготовления изделий с покрытиями, в которых обеспечиваются на всех этапах технологического процесса, а именно нанесения покрытия, обработки изделия и подготовки его к эксплуатации, качественно новые свойства изделий с покрытиями. Это дает основание вести дальнейшие исследования в этой области в направлении дальнейшего совершенствования технологий нанесения покрытий и создания принципиально новых их вариантов, направленных на повышение качества изделий различного назначения.
В последнее время активно начинают развиваться новые виды нетрадиционных покрытий - специальные, пятнистые и функционально-ориентированныe покрытия, обеспечивающие качественно новые свойства и возможности изготавливаемых изделий и машин. При этом эти покрытия наряду с высокими техническими и физико-механическими параметрами должны иметь высокие топологические свойства покрытий (толщина покрытия и пространственное расположение различных видов покрытия) на элементах поверхностей изделий. Это обусловлено необходимостью комплексного обеспечения качества изделий. Однако существующие в настоящее время технологии и методики расчетов алгоритмов нанесения покрытий не позволяют решать вопросы, связанные с качественным нанесением равномерных и неравномерных покрытий на различные зоны поверхностей изделий, качественно напылять пятнистые и функционально-ориентированные покрытия, существенно повысить производительность и эффективность нанесения покрытий, обеспечивать нанесение покрытий в теневых зонах и решать тому подобные задачи. В связи с этим особенно важными задачами при нанесении нетрадиционных вакуумных ионно-плазменных покрытий являются вопросы формообразования поверхностного слоя изделий. Вместе с тем для данных покрытий вопросы их формообразования неразрывно связанны с комплексным повышением качества нанесения покрытий на изделия и увеличением производительности. Только на базе совместного решения этих вопросов возможно обеспечениекачественно новой совокупности свойств и меры полезности выпускаемых изделий.

 

ОБЕСПЕЧЕНИЕ КАЧЕСТВА МАШИН НА ОПЕРАЦИЯХ СБОРКИ. Сборка является заключительным этапом производства. Но этот этаппринципиально отличается от других этапов тем, что именно в нем проявляются различные связи деталей, особенности их взаимодействия. После сборки совокупность свойств представляется как показатель качества машины. Машина может считаться качественной, если погрешность лежит в заданных пределах. Большое разнообразие машин не позволяет дать единой картины повышения качества машин на сборке. Сборка по методу полной взаимозаменяемости, применяемая в массовом и серийном производствах, не допускает подбора деталей, регулировок и пригонок. Качество машины обеспечивается самой компоновкой собираемых деталей, точность которых оказывается сравнительно высокой, равно как м себестоимость изготовления. Тогда замыкающие звенья имеют жесткие допуски. Экономические оценки играют в этом случае очень важную роль. Метод неполной взаимозаменяемости не гарантирует необходимое качество всех собираемых машин, так как у сравнительно небольшого количества объектов точность замыкающего звена не будет обеспечена. Широкое распространение получил метод сборки с групповойвзаимозаменяемостью. Все изготовленные детали разбивают на размерныегруппы, а соединение получают непосредственным подбором деталей, взятых из соответствующих групп. При этом допуски на детали каждой группы оказываются жесткими, что обеспечивает сборку весьма точных соединений. Однако повышение качества изделий этим методом не представляется возможным в условиях поточной сборки, так как нельзя гарантировать, что время на подбор двух деталей соединения будет постоянным и равным такту. Сборка с регулировкой представляет собой метод обеспечения качествамашин. Регулировку выполняют перемещением одной из деталей, которая играет роль компенсатора. Поэтому представляется возможным получать высокое качество всей цепи при сравнительно низкой точности звеньев. Точностные показатели сборки в оценке качества машин являютсяОдними из основных. Их обеспечение сопряжено с преодолением рядатехнологических трудностей. Сюда относят неточности изготовления собираемых деталей. Каждый тип производства имеет свои особенности сборки. В массовом производстве характерной является сборка на конвейерах,которые перемещаются непрерывно или периодически. Но главным являетсяналичие потока, когда продолжительность сборки на различных рабочих местах оказывается практически одинаковой и соответствует такту. Именно для этого случая сборки особенно важна обработка конструкции на технологичность, чтообеспечивает высокое качество соединений в условиях жесткого такта. Многие вопросы сборки в условиях массового производства успешно решены с помощью средств автоматизации, которая обеспечивает постоянство условий сборки, что повышает качество машины Следует считать прогрессивными такие технические решения, когда одинузел на сборке устанавливается относительно другого узла с помощью лучасвета, а оператор, получив сигнал о правильности расположения узлов, даеткоманду на их закрепление на базовой детали. В развитие высказанного технического решения можно привести примерсборочной системы, построенной в МВТУ им. Баумана. Она предназначена для сборки деталей типа втулок с корпусными деталями методом охлаждения. Любая втулка имеет на наружной (установочной) поверхности отклонение от цилиндричности (гранность), что объясняется особенностями ее изготовления.Аналогичные отклонения имеет и отверстие корпуса. Сборка с натягом в этих условиях повлечет за собой передачу отклонений от цилиндричностисопрягаемых поверхностей на отверстие втулки. Сборочная система состоит из трех участков: измерительного,вычислительного и сборочного. На измерительном участке проводят 100%-ную аттестацию всех поступающих на сборку деталей по параметру отклонения формы. Полученную информацию передают на вычислительный участок, где с помощью микропроцессора проводится гармонический анализ обеих сопрягаемых цилиндрических поверхностей. Результаты анализа позволяют провести ориентирование собираемых деталей. Оно состоит во взаимном повороте по разработанной программе одной из деталей вокруг своей оси так, чтобы имеющиеся погрешности формы сочетались на обеих поверхностях оптимальным образом. При этом перенос отклонений формы сопрягаемых поверхностей на отверстие втулки произойдет в наименьшей степени. Далее рука робота переносит уже ориентированную втулку в охлаждающую среду и по истечении определенного времени подает ее в отверстие корпуса для сборки поперечно- прессовым методом. В итоге каждая пара сопрягаемых деталей сочетается характерным только для нее образом, однако все действия системы не нарушают такта поточной сборки. Такой подход может представлять принципиальный интерес для массового производства. Серийное производство имеет свои существенные отличия на сборке, ноименно здесь могут встретиться самые различные организационные формы. С одной стороны, необходимо использовать преимущества автоматизированной сборки, с другой стороны, - автоматизация сдерживает возможность переналадки сборочного оборудования на изготовление новой партии изделий. Как и в массовом производстве, для повышения качества машин большую роль играет отработка конструкций на технологичность и соблюдение требований технологического процесса сборки. Широкое применение на сборке находят ориентирующие устройства. Ихназначение оказывается различным. При больших партиях собираемых деталей эти устройства могут играть роль распознавателей образов и давать команду на поворот и поступательное перемещение в пространстве деталей для сопряжения с другой деталью. В ориентирующих устройствах используются механические, электрические и пневматические элементы. Созданные в МВТУ им. Баумана оптические ориентирующие устройства позволяют подавать на сборку детали с исключительно малой асимметрией. Переналадка таких устройств с целью обеспечения гибкости сборочного оборудования занимают несколько минут. Положительным фактором является сочетание в этих устройствах функций ориентирования с функциями контроля деталей. Исключительно важную роль играют устройства, которые ориентируют одну деталь на сборке относительно другой. В условиях серийного производства оптические устройства позволяют выверять детали с использованием лучей лазера и затем закреплять их. Использование оптических устройств на сборке в целом позволило значительно повысить качество машин. Автоматизация собственно процессов сборки в условиях серийногопроизводства для всех видов соединений маловероятна. Вместе с тем дляповышения качества отдельных сопряжений или сопряжения группы деталей использование автоматизации необходимо. Логичным оказывается использование сборочных комплексов, которые способны выполнять функции контроля качества сборки. Широкое использование координатно-измерительных машин существенно повышает качество сборки. Наибольший эффект при сборке обеспечивают гибкие автоматизированныеустройства для отдельных наиболее ответственных соединений. Так, встанкостроении выделяют две группы деталей. Для каждой из групп решается проблема обеспечения качества с помощью автоматизации сборке на основе группой технологии. Повышению качества машин и их соединений способствует появлениеинтересных технологических решений, в частности, сборка пар ходовой винт-гайка. Такая пара обладает высоким качеством, когда обеспечивается заданное прилегание по регламентированному числу витков резьбы. Создан ряд технологических систем, объединяющих станки воедино. Если при окончательном изготовлении гайки возникает погрешность, то она фиксируется, и информация о ней передается на второй станок. Такая информация позволяет самонастраиваться станку для изготовления винтов с учетом погрешностей гайки. Возможности металлорежущих станков с ЧПУ привели к мысли об объединении в серийном производстве в едином технологическом комплексе процессов изготовления деталей и их сборки. Такое решение может обеспечить высокое качество соединений. Многообразие методов повышения качества на сборке объясняется условиями единичного производства и широким ассортиментом собираемых изделий – от объектов тяжелого машиностроения до приборов. Для каждого вида продукции требуются особые условия сборки. Например, именно на сборке обеспечивается качество высокооборотных приводов (шпинделей) шлифовальных станков высокой точности. Обеспечение на сборке изделия высокой точности является серьезной технологической проблемой. Необходимо учитывать деформации деталей на сборке. Упругие деформации вполне соизмеримы с допусками на изготовление деталей. В ряде случаев деформация может превосходить допустимое значение выходного параметра изделия. Так высокоточные детали на сборке могут превратиться в детали низкой точности. Собранное изделие, если и сможет работать, будет иметь низкую надёжность.

 








Дата добавления: 2017-10-09; просмотров: 3290;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.