Биологическое усиление радиационного поражения
Наиболее значимы для судьбы облученной клетки, изменения нуклеинового обмена, белкового обмена, окислительного фосфорилирования.
Практически сразу после облучения в делящихся клетках замедляется синтез ДНК. Активируются эндо- и экзонуклеазы, вследствие чего повышается ферментативный гидролиз молекул ядерной ДНК; увеличение проницаемости внутриклеточных мембран способствует поступлению ферментов во внутриядерное пространство, повышает доступность ядерной ДНК для ферментативной атаки. Распад ДНК приводит к повышению содержания в тканях полидезоксинуклеотдов. В крови и моче облученных нарастает количество нуклеотидов и продуктов их разрушения - азотистых оснований, нуклеозидов, мочевой кислоты и др.
Синтез РНК снижается в меньшей степени, чем ДНК. Отчасти нарушение синтеза РНК зависит от повреждения матричных структур ДНК.
Повреждение мембран лизосом и выход за их пределы протеаз способствуют в ранние сроки после облучения активации процессов протеолиза. Эта активация проявляется повышением уровня свободных аминокислот и других аминосоединений в тканях и жидкостях организма. Повышается активность протеолитических ферментов в крови, тканях, моче. Нарушается активность ингибиторов протеаз. Активация протеолиза не всегда является выражением процессов, происходящих в сохранивших жизнеспособность клетках. Она может отражать завершение деструкции уже погибших клеток.
Биосинтез белка нарушается мало. Однако, продолжающийся синтез белка в сочетании с глубоким снижением или даже прекращением синтеза ДНК может привести к серьезным нарушениям структуры и пространственной организации нуклеопротеидных комплексов.
Интенсивность потребления кислорода существенно не изменяется. Однако, в первые часы после облучения иногда наблюдаются признаки тканевой гипоксии. В высоко радиочувствительных клетках уже после облучения в сравнительно невысоких дозах отмечается нарушение окислительного фосфорилирования.
В клетках кроветворных тканей угнетение окислительного фосфорилирования выявляется уже через 2-4 ч после облучения, параллельно с глубоким распадом ДНК. По мнению ряда исследователей, нарушение синтеза АТФ является пусковым звеном в послелучевой деградации ДНК. Нарушение синтеза макроэргов может сказаться и на развитии восстановительных процессов, в частности, на работе системы ферментов репарации ДНК. Таким образом, подавление окислительного фосфорилирования играет заметную роль в радиационном поражении генетических структур клетки.
Дата добавления: 2017-03-29; просмотров: 396;