Чувствительный видеоусилитель

Тем, кто занимается применением схем видеоконтроля на ограниченном участке, будет полезен этот материал. Касаясь возможных вариантов обеспечения охраны в замкнутых помещениях, в аннотации к книге я замечал, что не всегда рентабельно нанимать физическую охрану. Во многих случаях вполне эффективно, зло и дешево будет действовать электронная система.

В пользу такого подхода говорит и тот аргумент, что электроника не подвержена настроению, состояниям апатии или депрессии, иногда свойственным людям. Конечно, при принятии решения и выборе системы охраны для своего имущества или контроля объектов руководителю следует учитывать все аспекты.

Могу на этих страницах вести речь только о тех или иных вариантах, освещать положительные и отрицательные качества той или иной схемы, устройства, подхода. Причем положительные качества одной и той же схемы могут сказаться отрицательными или нейтральными в том или ином варианте ее применения. Поэтому все зависит от конкретных задач и конкретных специалистов технических подразделений.

На рис. 3.1 показана общая блок‑схема взаимодействия устройств.

 

 

Рис. 3.1. Блок‑схема взаимодействующих устройств

 

Как правило, устройства видеоконтроля помещений состоят из видеодатчика (электронного глазка), видеоусилителя и монитора.

Устройства контроля звукового пространства (шума) состоят из высокочувствительных звуковых микрофонов, усилителей с большим коэффициентом усиления и оконечных УНЧ, замыкающихся на динамические головки.

В обоих случаях (и аудио‑, и видеоконтроля) необходимо присутствие человека‑оператора, который наблюдает за монитором, динамиками, таким образом контролируя охраняемую зону. Иметь такого работника‑охранника, который занимается только этим вопросом, я считаю неэффективным. Поэтому было разработано специальное устройство, автоматически включающее приборы отображения информации (мониторы и усилители) при нарушении внешних параметров контролируемой зоны. При включении монитора устройство автоматики (блок управления) издает короткий звуковой сигнал для привлечения внимания находящегося по близости человека.

После реализации этого прибора удалось сократить финансирование одного охранника, а небольшие дополнительные функции реагирования на аудио/видеодатчики можно поручить секретарю. На самом деле это лишь один вариант применения схемы автоматического блока управления.

На практике вариантов всегда несколько, но одно неоспоримо – никому не нужно все время сидеть и наблюдать монитор: он включится сам по необходимости. Устройство может применяться как в домах частного сектора (жилых помещениях), так и на промышленном (коммерческом) производстве.

В коммерческих и производственных структурах физическая охрана, возможно, будет наиболее оправдана, так как экономить на охране, если есть, что охранять, чревато. А в домашних условиях подобная схема показала себя весьма эффективной, удобной и практически не требует к себе внимания.

На рис. 3.2 показана электронная схема автоматического включения устройств отображения видеосигнала и звуковых усилителей при импульсе с контролируемого объекта.

 

 

Рис. 3.2. Электрическая схема чувствительного видеоусилителя сигналов (для видеоглазка)

 

Устройство стабильно работает, обеспечивая автоматический аудио/видеоконтроль помещения перед входной дверью квартиры.

Рассмотрим вариант видеоконтроля (рис. 3.2).

С промышленного видеоглазка, установленного в торце квартирной двери (см. блок‑схему – рис. 3.2), который включен постоянно, любым экранированным кабелем (можно применять и РК‑75) видеосигнал поступает на видеоусилитель, модулятор и далее на видеодетектор, который включает реле К1 при изменениях видеосигнала.

Видеоусилитель имеет регулировку усиления на переменном резисторе R3, который следует подобрать с линейной характеристикой. Транзисторы VT1‑VT5 с большим коэффициентом усиления можно заменить на КТ373А/Б, КТ342В, КТ3102Б.

Усилитель эффективно работоспособен при колебаниях напряжения питания 9… 12 В.

Режимы смещения транзисторов VT1 и VT2 следует установить так, чтобы на базе VT1 уровень напряжения был 5,5 (±5 %) В, на его эмиттере 5 В, на базе VT2 напряжение 4,5 В, на эмиттере 3,8 В (±5 %). Видеоусилитель можно исключить из электрической схемы, если уровень выходного сигнала с видеодатчика находится в пределах 0,8–1 В.

Точка А в схеме является входом индикатора модуляции на транзисторах VT6, VT7 и входом детектора видеосигнала.

Транзисторы VT6, VT7 можно заменить на КТ312А‑В. Уровень чувствительности схемы выбран таким, что светодиод HL1 сигнализирует наличие модуляции – изменения в общем фоне видеосигнала.

Видеодетектор на транзисторах VT3‑VT5 управляет реле и монитором в зависимости от видеосигнала на входе (точка А).

Поступающие импульсы открывают транзистор VT3 и запирают транзистор VT4. На RC‑цепочку задержки, реализованную на элементах R1 °C7, проходит постоянная составляющая напряжения, конденсатор С7 быстро заряжается, создается напряжение прямого смещения на базе транзистора VT5, он открывается и коммутирует реле. Диод VD3 служит препятствием бросков обратного напряжения и устраняет дребезг контактов реле.

Когда активные видеоимпульсы в точке А пропадают и транзистор VT4 открывается, реле остается включенным, пока не разрядится конденсатор С7. Так обеспечивается задержка времени выключения монитора.

При указанных на схеме номиналах С7 и R10 и напряжении питания + 12 В задержка выключения монитора составит примерно 1,5 мин. Задержка времени выключения монитора необходима для более эффективного контроля. Переключателем S1 можно вручную установить режим работы монитора постоянным.

Конденсаторы С5, Сб фильтруют помехи по питанию. В качестве реле К1 используется любое маломощное реле на напряжение срабатывания 10–12 В с двумя группами контактов или два реле типа РЭС 15, РЭС10, РЭС55 (на напряжение питания 10–12 В), включенные параллельно. Первой группой контактов К1.1 замыкается цепь питания видеомонитора. Второй группой контактов (см. рис. 2.37) К 1.2 управляется схема кратковременного звукового сигнала. Одновременно с включением видеомонитора устройство издает кратковременный звуковой сигнал на 2–3 сек для привлечения внимания людей к ситуации.

Достоинством схемы, кроме описанных выше, можно назвать реальную экономию ресурса монитора.

Недостатком такого схемного решения является необходимость постоянного освещения контролируемой зоны, для того чтобы видеодатчик (видеоглазок) эффективно реагировал на изменения в пространстве.

Аудиодатчик В1 – высокочувствительный электретный микрофон типа МКЭ‑30 – замаскирован в двери (или на косяке). Он обернут со всех сторон прорезиненными подушечками для меньшего восприятия к ударам по конструкции дома. Такими ударами в жилых домах являются громкое закрывание железной двери в подъезде, «хлопанье» соседних дверей, опускание крышки мусоропровода и другие механические и акустические воздействия. Сигнал от микрофона коротким (до 1 м длиной) экранированным проводом поступает на чувствительный предварительный усилитель звуковой частоты, а затем на схему чувствительного аудиодетектора, управляющего монитором и схемой задержки.

Транзисторы VT8‑VT10 в предварительном усилителе обязательно должны обеспечивать большой коэффициент передачи в диапазоне звуковых частот – от этого зависит эффективность усилителя.

Указанные на схеме транзисторы можно заменить на КТ3102Е, КТ373А, в крайнем случае подойдут КТ315Б.

В усилителе организована регулировка усиления с помощью переменного резистора R16, изменяющего глубину обратной связи. На выходе предварительного микрофонного усилителя используется чувствительный детектор аудиосигнала, организованный как «детектор шума» на популярном операционном усилителе КР1401УД2. Он реагирует на минимальные изменения звукового фона.

При необходимости устройство можно дополнить оконечным усилителем звуковой частоты, с тем чтобы можно было на расстоянии прослушивать фон контролируемого объекта.

Если достаточно только видеоконтроля, схему акустического автомата можно исключить. Однако следует иметь в виду, что она будет незаменимой в той ситуации, когда обеспечить освещенность контролируемого участка для нормальной работы видеодатчика не представляется возможным.

Как вариант, в другом исполнении, в качестве исполнительного элемента‑нагрузки к устройству аудиодетектора и задержки выключения можно подключить саму лампу освещения лестничной клетки. Тогда можно эффективно экономить свет и ресурс лампы освещения – ведь она будет загораться и автоматически гаснуть, только когда на лестничную клетку зайдут люди, нарушив нейтральный звуковой фон.

Устройство не содержит дорогих или дефицитных деталей, не требует настройки и при правильном монтаже начинает работать сразу.

Схемы задержки выключения монитора и кратковременного звукового сигнала подробно описаны в радиолюбительской литературе, в том числе автором, и имеют известные принципы работы.

 

 

3.2. Подключение «исполнительной» нагрузки

В ряде случаев бывает необходимо использовать импульсный сигнал невысокой мощности (на примере сигнала от видеокамеры) для световой или звуковой сигнализации, а также и для управления более мощной нагрузкой, в том числе в осветительной сети 220 В.

Примерами такого подхода могут быть современные электронные «гаджеты» с низковольтным питанием от батареек в диапазоне 3–6 В, разнообразные радиолюбительские «самоделки», детские игрушки и даже… видеодомофон. О последнем надо сказать особо.

Рассмотрим электрическую схему на рис. 3.3.

 

 

Рис. 3.3. Электрическая схема адаптера для сигнализатора активности видеоглазка (видеокамеры)

 

С выхода платы импульсы напряжения с амплитудой примерно 1,3 В поступают через резистор R1 на базу биполярного транзистора VT1. Причем на практике установлено, что размах напряжения на его коллекторе (усиленный сигнал) в несколько раз больше, чем входной сигнал. Стабилитрон VD2 и оксидный конденсатор С1 необходимы соответственно для стабилизации и аккумулирования напряжения и для мигающего светодиода HL1 после окончания «активного видеосигнала» на входе устройства (схема на рис. 2.38); благодаря этой цепи, а главным образом конденсатору С1, светодиод еще будет мигать примерно 6–8 сек. Время инерции здесь зависит от емкости С1.

Схему доработки можно собрать на небольшом участке перфорированной платы и спрятать в любой подходящий корпус.

Резистор R2 ограничивает ток через светодиод, защищая последний, а диод VD1 выпрямляет импульсы звуковой частоты и дополнительно служит элементом развязки стабилизационного каскада, реализованного на КС168А и конденсаторе С1.

Перспективная польза от такой идеи в том, что почти аналогичным образом можно вместо мигающего светодиода подключить оптопару для управления нагрузкой, питающейся, в свою очередь, от осветительной сети.

Таким образом, не создавая какой‑либо новой схемы (устройства), используя уже готовую, можно сделать разнообразные автоматические устройства, реагирующие – в данном случае – на видеосигнал.

А подобное доработанное устройство вполне может управлять уже «неигрушечным» периферийным устройством нагрузки. Таким образом, польза в экономии времени и радиоэлементов очевидна.

На месте VT1 можно использовать не только биполярный, но и составной или полевой (МОП) транзистор. К примеру, КП501, КП505, ZVN2120.

Для выбора оптопары нужно заглянуть в проверенный справочник. В рассматриваемом случае вполне подойдет симисторная одноканальная оптопара, управляемая напряжением 1,2–1,5 В при входном токе 10 мА, с параметрами напряжения коммутируемой цени до 260 В, к примеру АОУ163А в шестивыводном корпусе DIP6. Она состоит из инфракрасного AsGaAl светодиода и кристалла высоковольтного фоточувствительного симистора, рассчитана на коммутацию переменного напряжения в силовой цепи с током до 100 мА. Цена такого радиоэлемента невысока, до 50 рублей.

Расположение (цоколевка) выводов представлено на рис. 3.4.

 

 

Рис. 3.4. Цоколевка (расположение выводов) оптопары АОУ163А

 

В этой типовой схеме элементы R и С являются цепью защиты симистора, а нагрузка подключается вместо Rогр, последовательно с симистором.

Эта типовая схема включения взята с сайта http://www.may.ru/otcomp/optorele/docs/lprac.pdf.

Можно подобрать и другую, более мощную оптопару – для управления силовыми цепями, к примеру МОС3030, МОС3063 или аналогичную, по тому же принципу.

Но здесь кроятся интересные особенности.

Если собрать схему согласно рис. 3.4, то есть на вход оптопары (выводы 1 и 2 – вход согласно рис. 2.38) подключить параллельно мигающему светодиоду, а выход (выводы 4 и 6 – безотносительно полярности) – к силовой цепи (рис. 3.5), то устройство работает некорректно: включается по звуковому сигналу от микроконтроллера видеорегистратора и остается во включенном состоянии. И основная причина явления здесь не в стабилизационной цепи VD2, С1.

 

 

Рис. 3.5. Подключение симисторной оптопары МОС3063 без дополнительного симистора

 

Это подтверждается тем, что если собрать дополнение к такой схеме с добавочным симистором ТС106‑10 (как вариант ТС112‑16) – в соответствии с рис. 3.5, тогда устройство будет работать нормально и безупречно управлять мощной нагрузкой. Надо понимать, что мощная нагрузка (к примеру, электролампа) в цепи ТС 106 подключается последовательно с ним.

 

 








Дата добавления: 2016-05-11; просмотров: 1728;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.025 сек.