Автомобили газоводяного тушения (АГВТ)

 

В перечне пожарных автомобилей целевого применения АГВТ занимают особое положение. Это обусловлено как областью их применения, так и спецификой механизма тушения пожара.

Основу АГВТ составляют турбореактивные двигатели (ТРД). Высокая скорость их отработавших газов (рис.9.39) обусловливает гидродинамический срыв пламени. Особенно эффективным он оказался при тушении горящих нефтяных и газовых фонтанов. Для улучшения механизма тушения в струю отработавших газов вводят воду. Это, хотя и снижает их скорость и температуру (рис.9.40), но обеспечивает охлаждение фронта пламени горящего фонтана.

Впервые АГВТ был применен в нашей стране в 1967 г., когда успешно был потушен пожар нефтяного фонтана с дебитом 6000 т/сутки. С тех пор тушение горящих газовых (нефтяных) фонтанов осуществляется в основном АГВТ.

Для рационального тушение пожаров АГВТ должны удовлетворять ряду требований:

– базовое шасси для них должно быть высокой проходимости, так как они используются в условиях бездорожья;

– ТРД должны иметь большую тягу с достаточно большим количеством отработавших газов;

– направление огнетушащей струи (отработавшие газы и введенная в них вода) должно регулироваться в вертикальной или горизонтальной плоскостях;

– в конструкции АГВТ должны предусматриваться устройства, обеспечивающие его устойчивость при работе ТРД.

АГВТ состоит из базового шасси 1 (рис.9.41), турбореактивного двигателя 6, подъемно-поворотного устройства для него 7, лафетных стволов 5, цистерны 4 с топливом для ТРД, тепловой защиты 3 и бака 10 для воды, обеспечивающей защиту от теплового излучения.

Управление направлением газоводяной струи турбореактивного двигателя 6 осуществляется гидроприводами, включенными в гидравлическую систему (рис.9.42). В нее входят гидромотор 8 поворота двигателя, гидроцилиндры 9 его подъема, гидроцилиндры 10 блокировки рессор и гидромотор насосного агрегата 11, питающего систему орошения.

Гидравлическая жидкость из бака 1 может подаваться насосами 3,4 или 17 в напорную линию Р. От нее через соответствующие клапаны 7 или гидрораспределители 13 она поступает в исполнительные механизмы. При их выключении гидравлическая жидкость поступает к гидрораспределителю 13, а затем по трубопроводу Т через фильтр 16 в бак 1. По дренажному трубопроводу 18 жидкость сливается в бак 1 от гидронасоса 3 и гидромоторов 8 и 11.

В качестве гидравлической жидкости применяют масло ВМГ3, МГЕ и др. масла. Давление в системе 16 МПа.

Подача воды в поток отработавших газов осуществляется лафетными стволами. Они укрепляются на корпусе ТРД так, что водяные струи входят в газовый поток на расстоянии 1…2 метров от сопла ТРД.

На АГВТ устанавливают лафетные стволы с диаметром насадка 36 мм и расходами 20 л/с. Вода к ним подается от ПНС, насосно-рукавных автомобилей или пожарных автоцистерн.

При тушении пожаров АГВТ устанавливают на небольших расстояниях от горящего факела. Поэтому на них предусматривается защита от тепловых потоков до 25 кВт/м2 для обеспечения безопасной работы.

Для защиты АГВТ от теплового потока пожара устанавливают оросители щелевого типа. Щелевые насадки ориентированы на орошение кабины боевого расчета, цистерны с горючим для ТРД и бака с горючим для АГВТ и колес. Для защиты от теплового излучения горящего факела рекомендуется применять съемные экраны из асбестоткании других материалов. Ими возможно защищать колеса автомобиля, бензобаки, кабину.

Система запуска и управления ТРД дистанционная. Пульт управления выносной. Управление возможно на расстоянии до 50 м. На АГВТ предусматривается с лоринготелефонной аппаратурой.

Одним из параметров, характеризующих совершенство ТРД, является тяга. Она находится в пределах 10…50 кН. Тяга ТРД является причиной опрокидывающей силы. Поэтому становится важным обеспечение устойчивости АГВТ против опрокидывания.

Опрокидывающая сила Р0 равна (рис.9.43)

, (9.13)

где: Т – тяга, Н; R - реактивная сила водяной струи, Н

Реактивная сила водяной струи определяется

, (9.14)

где: ω - площадь насадка лафетного ствола, м2; р – давление у насадка, Па; n - количество лафетных стволов.

В вертикальной плоскости опрокидывающая сила в поперечном направлении равна

.

В горизонтальной плоскости ее величину определим по формуле

.

Опрокидывание произойдет в случае Rв = 0, тогда можно записать

, (9.15)

где: Му –момент удерживающий, Нм; Мо – момент опрокидывающий, Нм.

Из рис.9.43 можно записать:

где: Ga - сила веса, Н.

Сила веса определяется по формуле

, (9.16)

где: m - масса автомобиля, кг; g - земное ускорение, м/с2.

Сила опрокидывающая, Н

. (9.17)

Зная величины Му и Мо , определяют запас устойчивости

. (9.18)

Запас устойчивости для грузоподъемных стреловых машин принимается равным 1,4. При работе ТРД сила тяги может резко изменяться, например, при резком изменении частоты вращения двигателя, поэтому запас устойчивости принимается Ку ≥ 2. Для повышения устойчивости АГВТ необходимо применять блокировку рессор.

Некоторые параметры технических характеристик АГВТ приведены в табл.9.7.

Продолжительность маневров ТРД достаточно мала. Так, ТРД АГВТ-150 время поворота в любую сторону до максимального значения равно 8 с, вверх – 13, а вниз – 4 с.

Таблица 9.7

Показатели Размер- ность АГВТ-100(131) мод.141 АГВТ-150(43114)
Тип шасси Колесная формула Мощность двигателя Удельная мощность Максимальная скорость Тип ТРД Количество лафетных стволов Расход воды Вместимость топливных баков Производительность по газоводяной смеси Углы поворота ТРД - вверх - вниз - вправо и влево   - - кВт кВт/т км/ч   шт. л/с л кг/с   град     ЗИЛ-131 6х6 10,5 ВК-1А       КамАЗ-43114 6х6 12,6 ВК-1      

 

 








Дата добавления: 2016-04-22; просмотров: 1798;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.