Компьютеры с суперскалярной обработкой

Еще одной разновидностью однопотоковой архитектуры является суперскалярная обработка. Смысл этого термина заключается в том, что в аппаратуру процессора закладываются средства, позволяющие одновременно выполнять две или более скалярные операции, т.е. команды обработки пары чисел. Суперскалярная архитектура базируется на многофункциональном параллелизме и позволяет увеличить производительность компьютера пропорционально числу одновременно выполняемых операций. Способы реализации суперскалярной обработки могут быть разными.

Аппаратная реализация суперскалярной обработки применяется как в CISC, так и в RISC - процессорах и заключается в чисто аппаратном механизме выборки из буфера инструкций (или кэша инструкций) несвязанных команд и параллельном запуске их на исполнение. Этот метод хорош тем, что он «прозрачен» для программиста, составление программ для подобных процессоров не требует никаких специальных усилий, ответственность за параллельное выполнение операций возлагается в основном на аппаратные средства.

VLIW-архитектуры суперскалярной обработки. Второй способ реализации суперскалярной обработки заключается в кардинальной перестройке всего процесса трансляции и исполнения программ. Уже на этапе подготовки программы компилятор группирует несвязанные операции в пакеты, содержимое которых строго соответствует структуре процессора. Например, если процессор содержит функционально независимые устройства (сложения, умножения, сдвига и деления), то максимум, что компилятор может «уложить» в один пакет - это четыре разнотипные операции; (сложение, умножение, сдвиг и деление). Сформированные пакеты операций преобразуются компилятором в командные слова, которые по сравнению с обычными инструкциями выглядят очень большими. Отсюда и название этих суперкоманд и соответствующей им архитектуры - VLIW (Very Large Instruction Word - очень широкое командное слово). По идее, затраты на формирование суперкоманд должны окупаться скоростью их выполнения и простотой аппаратуры процессора, с которого снята вся «интеллектуальная» работа по поиску параллелизма несвязанных операций. Однако практическое внедрение VLIW-архитектуры затрудняется значительными проблемами эффективной компиляции.

Архитектуры класса SISD охватывают те уровни программного параллелизма, которые связаны с одиночным потоком данных. Они реализуются многофункциональной обработкой и конвейером команд.

Параллелизм циклов и итераций тесно связан с понятием множественности потоков данных и реализуется векторной обработкой. В таксономии компьютерных архитектур М. Флина выделена специальная группа однопроцессорных систем с параллельной обработкой потоков данных – SIMD.

 

 

SIMD-компьютеры

SIMD (Single Instruction Stream - Multiple Data Stream) или ОКМД - один поток команд и множество потоков данных. SIMD компьютеры состоят из одного командного процессора (управляющего модуля), называемого контроллером, и нескольких модулей обработки данных, называемых процессорными элементами.

 
 

 


Рис. 2.3. SIMD- архитектура

 

Управляющий модуль принимает, анализирует и выполняет команды. Если в команде встречаются данные, контроллер рассылает на все процессорные элементы команду, и эта команда выполняется на нескольких или на всех процессорных элементах.

Все процессорные элементы идентичны и каждый из них представляет собой совокупность управляюще-обрабатывающего органа (быстродействующего процессора) и процессорной памяти небольшой емкости. Процессорные элементы выполняют операции параллельно над разными потоками данных (ПД) под управлением общего потока команд (ПК), вследствие чего такие ЭВМ называются системами с общим потоком команд. В любой момент в каждом процессоре выполняется одна и та же команда, но обрабатываются различные данные. Реализуется синхронный параллельный вычислительный процесс.

Одним из преимуществ данной архитектуры считается то, что в этом случае более эффективно реализована логика вычислений. До половины логических инструкций обычного процессора связано с управлением выполнением машинных команд, а остальная их часть относится к работе с внутренней памятью процессора и выполнению арифметических операций. В SIMD компьютере управление выполняется контроллером, а "арифметика" отдана процессорным элементам. Возможны два способа построения компьютеров этого класса. Это матричная структура ЭВМ и векторно-конвейерная обработка.

 

 








Дата добавления: 2016-04-11; просмотров: 1063;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.