СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

Функциональные изменения тренированных спортсменов

Аппарат кровообращения занимает особое место во всей системе транспорта кислорода из окружающей среды к работающим мышцам и органам в связи с тем, что является основным лимитирующим звеном этой системы. Из-за невозможности чрезмерно повысить производительность сердца при мышечной работе, индивидуальный «кислородный потолок» у человека ограничивается 3—6 л кислорода в минуту. Этот важный факт и объясняет ту роль, которую играет сердечная деятельность в обеспечении спортивной работоспособности. В ряде видов спорта, в которых требования к транспорту кислорода особенно высоки (виды спорта, связанные с проявлением выносливости), тренировка спортсмена сводится в определенной мере к тренировке самого сердца.

Лимитирующая роль сердечно-сосудистой системы связана не только с производительностью самого сердца. Не менее важны в этом отношении и периферические механизмы, и в частности кровоток в капиллярах. Интенсивность кровотока по нутритивным капиллярам может оказать существенное влияние на массоперенос О2 из эритроцита к митохондриям мышечных клеток.

4.3.1. Структурные особенности спортивного сердца

Увеличение размеров спортивного сердца является следствием либо увеличения размеров его полостей, либо утолщения стенок желудочков и предсердий. По-видимому, более правильно говорить о преобладании той или иной структурной особенности.

Дилятация, или расширение полостей сердца, касается как желудочков, так и предсердий. Однако наибольшее значение имеет дилятация желудочков. Она обеспечивает одно из важнейших функциональных свойств спортивного сердца — высокую производительность.

О размерах спортивного сердца судят по данным телерентгенометрического исследования: производится два рентгеновских снимка во фронтальной и сагиттальной проекциях (рис. 15). Полученные рентгенограммы обрабатывает врач, который рассчитывает объем спортивного сердца.

У здоровых нетренированных мужчин в возрасте 20—30 лет объем сердца составляет в среднем 760 см3, а у женщин — 580 см3. Представлены данные, которые показывают, что размеры сердца у спортсменов в значительной степени определяются характером спортивной деятельности (аналогичная зависимость отмечается и у спортсменок, см. VII.5).

И наконец, у спортсменов, развивающих главным образом скоростно-силовые качества, объем сердца увеличен крайне незначительно по сравнению с нетренированными людьми. Эти закономерности находятся в хорошем согласии с теорией. Действительно, высокая производительность сердечно-сосудистой системы, а следовательно, и всей кардио-респираторной системы, необходима лишь в видах спорта, связанных с проявлением выносливости.

Таким образом, дилятация характерна не для сердца спортсменов вообще, а лишь для сердца тех из них, которые тренируются на выносливость. Дилятация сердца у представителей скоростно-силовых видов спорта в связи со всем сказанным не является рациональной. Такие случаи подлежат углубленному врачебному исследованию с целью выяснения причины увеличения сердца.

Совершенно очевидно, что физиологическая дилятация спортивного сердца ограничивается определенными пределами. Чрезмерный объем сердца (более 1200 см3 по С. В. Хрущеву) даже у спортсменов, тренирующихся на выносливость, может явиться результатом перехода физиологической дилятации сердца в патологическую. Значительное увеличение объема сердца (иногда до 1700 см3) отражает наличие патологических процессов в сердечной мышце, которые могут развиваться в результате нерациональной тренировки.

Для решения вопроса о допустимой величине сердца у того или иного спортсмена следует сопоставить этот параметр с величиной максимального потребления кислорода или с величиной максимального О2-пульса. Если в процессе тренировки отмечается рост размеров сердца, который сопровождается ростом максимального потребления кислорода, — дилятация носит адаптивный, физиологический характер. Если же показатели транспорта кислорода не растут или даже начали снижаться, дилятацию сердца следует считать чрезмерной.

Индивидуальная оценка объема сердца в связи с антропометрическими особенностями спортсмена производится путем определения так называемого относительного объема сердца. Для расчета этой величины чаще всего объем сердца делится на вес спортсмена в кг (есть и более сложные способы расчета относительного объема сердца).

Физиологическая дилятация сердца у спортсменов является весьма лабильной. Так, установлено, что в процессе роста тренированности в подготовительном периоде объем сердца может увеличиться на 15—20%.

Физиологическая гипертрофия миокарда — другая структурная особенность спортивного сердца. Как и гипертрофия вообще, она является важным приспособительным механизмом, обеспечивающим повышение работоспособности органа (см. 2.7). Биологическая целесообразность развития гипертрофии миокарда вытекает из того факта, что во время физической нагрузки (по сравнению с покоем) при одном сокращении спортивное сердце должно выбрасывать примерно в 2—3 раза больше крови за укороченное вдвое время. Совершенно очевидно, что для выполнения столь значительной работы по перемещению крови сила сокращения сердечной мышцы должна быть увеличенной. Это достигается благодаря развитию гипертрофии миокарда.

Гипертрофический процесс в миокарде, развивающийся в связи с физической нагрузкой, происходит за счет увеличения числа саркомеров, числа и размеров митохондрий, рибосом и других структур сократительных элементов сердечной мышцы (Д. С. Сарки-сов). В связи с этим главным критерием наличия гипертрофии миокарда является увеличение его массы. Последняя с помощью эхокардиографии может быть определена прижизненно.

Как показано в табл. 5, масса миокарда в той или иной мере увеличена у спортсменов всех специализаций (по сравнению с нетренированными людьми). Из этого можно сделать вывод о том, что у подавляющего числа систематически занимающихся спортом имеется различной выраженности рабочая гипертрофия миокарда. Естественно, что она существенно меньше, чем у больных с патологической гипертрофией. Физиологическая гипертрофия миокарда обратима после уменьшения нагрузки на сердце.

В связи с обсуждаемой проблемой представляют интерес материалы посмертного исследования сердца спортсменов, погибших от случайных причин. Оказывается, что у подавляющей части из них вес сердца либо был на верхней границе нормы, либо превосходил ее (Н. Д. Граевская, Л. Н. Марков, Райндель и многие др.). Эти факты также указывают на развитие гипертрофического процесса в миокарде у большинства спортсменов.

Выраженность гипертрофии миокарда у спортсменов трудно оценивать по толщине той или иной стенки сердца, органа, имеющего сложную конфигурацию и неравномерное распределение мышечных волокон по отношению к поверхности полостей. Поэтому говорят об усредненной толщине миокардиальной стенки или, точнее, о поверхностной плотности миокарда (В. Л. Карпман, 3. Б. Белоцерковский). У представителей скоростно-силовых видов спорта она значительно выше, чем у тренирующихся на выносливость. Таким образом, у спортсменов с выраженной дилята-цией полости левого желудочка усредненная толщина его стенки меньше, чем у спортсменов с нормальной или лишь слегка расширенной полостью. Но общая масса структур, обеспечивающих сокращение сердца при нагрузке, больше у спортсменов, тренирующихся на выносливость. Именно это и обеспечивает ту колоссальную производительность сердца, которая характерна для бегунов на средние и длинные дистанции, велосипедистов-шоссейников, лыжников и т. д.

Рабочая гипертрофия миокарда характеризуется ростом капиллярной сети. Без этого уже незначительная степень гипертрофии приводила бы к относительному кислородному голоданию волокон миокарда. При развитии рабочей гипертрофии отношение числа капилляров к числу волокон миокарда возрастает (Комадел и др.), благодаря чему кровоснабжение мышечных элементов не страдает.

Все сказанное о целесообразности развития рабочей гипертрофии миокарда относится лишь к умеренным ее степеням. Если гипертрофия становится чрезмерной, то ухудшается кровоснабжение миокарда. Возникает относительное кислородное голодание отдельных мышечных элементов, которое может закончиться развитием некроза с последующим замещением мышечной ткани соединительной, т. е. развитием кардиосклероза. Такая гипертрофия не свойственна нормальному спортивному сердцу. Она может возникать либо при нерациональных тренировках, либо при некоторых сопутствующих заболеваниях (см. рис. 4). Как и чрезмерная дилятация, чрезмерная гипертрофия миокарда у спортсменов указывает на возникновение предпатологического или даже патологического процесса в сердце. Сократимость такого сердца снижается, и производительность его падает.

Функциональные особенности спортивного сердца в первую очередь касаются интимных механизмов сердечной деятельности. Наряду с этим можно говорить о некоторых общих функциональных особенностях спортивного сердца. К их числу принято относить экономичность сердечной деятельности в условиях покоя и при физической нагрузке, а также чрезвычайно высокую производительность сердечно-сосудистой системы при мышечной работе.

Функциональные особенности спортивного сердца касаются всех его функций: автоматии, возбудимости, проводимости и сократимости. Для работы тренера и преподавателя физического воспитания наибольший интерес представляет сократительная функция миокарда, которую оценивают в основном по показателям кардио-динамики и гемодинамики.

Непосредственно после спортивной тренировки, особенно интенсивной, развивается фазовый синдром острого утомления миокарда (А. Д. Бутков). Для него характерно удлинение не только фазы изоволюмического сокращения, но и периода изгнания. Обнаружение этого синдрома спустя длительное время после напряженных спортивных тренировок указывает на выраженное утомление миокарда.

Сократительная функция миокарда оценивается по тому количеству крови, которое выбрасывается из сердца в покое и при нагрузке — по показателям гемодинамики. Как известно, ударный объем крови у здоровых нетренированных людей чаще всего колеблется в пределах 40—90 мл, у спортсменов — в пределах 50—100 мл (у некоторых спортсменов в условиях покоя эти величины составляют 100—140 мл). Таким образом, есть основание говорить, что у спортсменов в условиях покоя обнаруживается тенденция к увеличению ударного объема крови. Имеется два механизма, объясняющих эту тенденцию. Один из них связан с антропометрическими особенностями спортсменов: чем больше у них рост и вес или, иными словами, чем больше площадь поверхности тела, тем больше и ударный объем крови. Действительно, например, у баскетболистов этот показатель колеблется от 85 до 140 мл. У спортсменов с малыми размерами тела он ближе к нижней границе приведенного диапазона. Отмеченная взаимосвязь объясняется тем, что размеры тела у человека с нормальным физическим развитием в общем связаны с размерами сердца, которые увеличиваются пропорционально росто-весовым данным.

Другой механизм увеличения ударного объема крови у спортсменов связан с характером спортивной деятельности. Из табл. 7 видно, что наибольшие величины систолического объема обнаруживаются у спортсменов с высоким уровнем общей физической работоспособности (у лыжников, велосипедистов, стайеров и т.д.).

Как уже говорилось, у таких спортсменов отмечаются наибольшие размеры сердца, полости которого дилятированы, КДО в желудочках увеличен, что, в свою очередь, позволяет осуществлять больший систолический выброс. Характерно, что именно у этих же спортсменов отмечается более низкая ЧСС.

У спортсменов с относительно невысоким уровнем общей физической работоспособности (гимнастов, тяжелоатлетов и т. д.) величины ударного объема крови также относительно меньше (как правило, в нормальных пределах).

Главный гемодинамический показатель — минутный объем кровообращения — характеризует уровень кровоснабжения тканей и связанную с этим доставку к ним кислорода и выведение из них углекислоты. В условиях покоя потребность организма в кровоснабжении относительно невелика. Поэтому величины минутного объема кровообращения также невелики. У здоровых нетренированных людей этот показатель, зарегистрированный при горизонтальном положении тела, обычно равен 3—6 л/мин, при вертикальном положении тела, когда несколько уменьшается венозный возврат крови к сердцу, — 2,5—5 л/мин.

У спортсменов величина минутного объема кровообращения колеблется в весьма широких пределах: от 3 до 10 л/мин (при вертикальном положении тела). Примерно у 60% спортсменов она соответствует нормальным стандартам, зарегистрированным у здоровых нетренированных людей, у остальных спортсменов увеличена, причем у некоторых из них значительно — до 8—10 л/мин. Такое увеличение чаще всего наблюдается у высокорослых спортсменов. На рис. 20 видно, что чем больше площадь поверхности тела, тем выше и средняя величина минутного объема кровообращения. Если же величину минутного объема кровообращения представить не в виде абсолютных цифр (в л/мин), а в виде так называемого сердечного индекса (минутный объем кровообращения, деленный на площадь поверхности тела, л/мин/м2), то отмеченной зависимости не обнаруживается: сердечный индекс примерно одинаков у спортсменов с различными антропометрическими характеристиками (см. табл. 7).

Если между величиной систолического объема и уровнем работоспособности спортсмена имеется определенная взаимосвязь, то величина минутного объема кровообращения в покое мало связана с уровнем физической работоспособности. Это объясняется тем, что минутный объем кровообращения зависит не только от величины систолического объема, но и от ЧСС. Оба эти показателя, определяющие величину минутного объема кровообращения, по-разному связаны с уровнем физической работоспособности: с ударным объемом крови имеется прямая пропорциональная зависимость, а с ЧСС — обратная пропорциональная зависимость. В результате таких разнонаправленных тенденций величина минутного объема кровообращения оказывается мало зависящей от уровня физической работоспособности.

Брадикардия у спортсменов может быть чрезвычайно выраженной— до 29—34 уд/мин. Имеются отдельные наблюдения еще более низкого ритма. Важно отметить, что брадикардия у здоровых спортсменов всегда носит синусовый характер, т. е. источником низкого ритма является сам синусовый сино-атриальный узел сердца.

Синусовая брадикардия обнаруживается у всех регулярно тренирующихся спортсменов в условиях основного обмена (сразу после сна, лежа, натощак). Вид спорта не имеет принципиального значения. Выраженность ее, в общем, обратно пропорциональна лишь величине ударного объема крови. А поскольку у спортсменов, тренирующихся на выносливость, этот параметр относительно увеличен даже в покое, у них брадикардия наиболее выражена. Именно поэтому у этих спортсменов и экономизация работы сердца больше: сходные величины минутного объема кровообращения у них достигаются главным образом за счет увеличения сердечного выброса, а не за счет пульсовой реакции.

У многих спортсменов брадикардия наблюдается на протяжении всего времени бодрствования (естественно, речь не идет о времени тренировок и соревнований). У некоторых же в середине и в конце рабочего дня при исследовании в вертикальном положении или в положении сидя брадикардия не выявляется.

Уменьшение ЧСС у спортсменов препятствует «изнашиванию» миокарда и имеет важное оздоровительное значение. На протяжении суток, в течение которых не было тренировок и соревнований, сумма суточного пульса у них на 15—20% меньше, чем у лиц того же пола и возраста, не занимающихся спортом. Характерно, что даже в дни напряженных тренировок, когда отмечается выраженная тахикардия, суточная сумма пульса оказывается все-так меньше, чем у нетренированных людей.

Функциональные характеристики сердечно-сосудистой системы особенно демонстративны при физической нагрузке. В это время полностью перестраивается кардиодинамика: длительность всех фаз сердечного цикла укорачивается. Вместо ФСГ миокарда в покое, свидетельствующем об экономизации сердечного сокращения, при нагрузке всегда обнаруживается гипердинамия миокарда. У высококвалифицированных спортсменов она проявляется главным образом резким укорочением (в 20—30 раз) фазы изоволюмического сокращения. А это значит, что максимальная скорость повышения давления в желудочке (dp/dtmax) значительно возрастает, свидетельствуя об усилении сокращения сердечной мышцы. Как следствие этого растет ударный объем крови (до 150—200 мл), ЧСС повышается до 185—200 уд/мин.

Минутный объем кровотока при максимальных нагрузках может повышаться до 25—40 л/мин (зарегистрированы даже величины, равные 42 л/мин). Столь значительный разброс величин определяется соотношением сердечного выброса и использованием О2 в мышцах (увеличение ар-териовенозной разницы по кислороду АВРсь). Выделяются три варианта этого соотношения — оптимальный (увеличение минутного объема кровотока и АВРо2 сбалансировано), эксцессивный, избыточный (минутный объем кровотока резко увеличен по сравнению с должным, АВРо2 уменьшена) и редуцированный, сниженный (минутный объем кровотока относительно уменьшен, АВРо2 увеличена). Все эти варианты одинаково эффективны, так как максимальное потребление кислорода (МПК) при каждом из них практически одинаково.

Эксцессивный гемодинамический режим кровообращения определяется структурно-функциональными особенностями хорошо развитого спортивного сердца. Однако столь высокие нагрузки на миокард являются потенциальной причиной развития перенапряжений сердца у некоторых спортсменов.

При редуцированном режиме кровотока происходит увеличенная экстракция Ог из капиллярной крови.

Некоторые нарушения сердечного ритма встречаются у спортсменов чаще, чем у нетренированных людей (табл. 11).

При анализе автоматии спортивного сердца закономерно выявляется уменьшение активности синусового узла сердца. В качестве нормальных стандартов ЧСС у нетренированных людей принят диапазон 60—90 уд/мин. Повышение его (тахикардия) в условиях физического и психического покоя указывает на нарушение нейрогуморальной регуляции сердца, на заболевания сердца и т. д.

Брадикардия (пульс менее 60 уд/мин) наблюдается, как уже говорилось, у подавляющего числа спортсменов в условиях основного обмена. Чаще всего ее нижней границей является ЧСС от 50 до 40 уд/мин. При более редком пульсе спортсмен должен быть подвергнут электрокардиографическому обследованию с целью выяснения генеза брадикардии.

В условиях, отличных от основного обмена, брадикардия может не развиться. Причины этого выяснены неполностью. Есть основания считать, что отсутствие брадикардии у спортсменов может быть связано с ежедневными многоразовыми тренировками. В результате такой интенсификации тренировочного режима, накопления определенного утомления полного восстановления ЧСС может не происходить. Нельзя исключить при этом и воздействий со стороны симпатической нервной системы. Признаками утомления организма спортсмена можно считать высокую ЧСС в покое (более 80 уд/мин).

Давление крови в артериях (АД) — один из главных показателей функционального состояния сердечно-сосудистой системы. Величина АД определяется большим числом факторов, среди которых наиболее важным является соотношение минутного объема кровотока и сопротивления кровотоку, оказываемого на уровне артериол (периферического сопротивления).

Артериальное давление зависит от возраста человека. Так, у 17—18-летних нетренированных юношей верхняя граница нормы равна 129/79 мм рт. ст., у лиц 19—39 лет— 134/84; у лиц 40—49 лет— 139/84; у лиц 50—59 лет— 144/89; у лиц старше 60 лет — 149/89.

Всемирная организация здравоохранения узаконила понятие «пограничная гипертензия», при которой АД больше 139/89 мм рт. ст., но не превышает 159/94 мм рт. ст. Нахождение АД в зоне пограничной гипертензии непостоянно — без всякого лечения оно нормализуется, признаки поражения внутренних органов, характерные для гипертонической болезни, не наблюдаются. Пограничная гипертензия встречается у 6—7% молодых людей (М. С. Кушаков-ский). У спортсменов случаи превышения этой зоны крайне редки.

У подавляющего большинства спортсменов величины АД соответствуют приведенным нормальным стандартам. Вместе с тем у некоторых спортсменов регистрируется как повышение, так и понижение АД.

Раньше понижение АД (артериальная гипотония) у спортсменов рассматривалось как проявление высокой тренированности. Однако в последние годы на основании анализа большого клинического материала стало ясным, что понижение АД может быть признаком патологии. Только у 33,2% спортсменов гипотония имеет физиологическое происхождение и указывает на высокий уровень тренированности (А. Г. Дембо); у остальных низкое АД связано с наличием очагов хронической инфекции, с переутомлением и т. Д

АД у спортсменов — важный интегральный показатель функционального состояния сердечно-сосудистой системы. Эта информация имеет значение как для диагностики состояния тренированности, так и (в ряде случаев) для диагностики предпатологических и патологических состояний.

Важная информация о нарушениях деятельности сердца у спортсменов может быть получена при фонокардиографическом исследовании.

4.4. СИСТЕМА ВНЕШНЕГО ДЫХАНИЯ

В условиях спортивной деятельности к аппарату внешнего дыхания предъявляются чрезвычайно высокие требования, реализация которых обеспечивает эффективное функционирование всей кардио-респираторной системы. Несмотря на то что внешнее дыхание не является главным лимитирующим звеном в комплексе систем, транспортирующих Ог, оно является ведущим в формировании необходимого кислородного режима организма.

Под влиянием систематической спортивной деятельности увеличивается сила мускулатуры, осуществляющей дыхательные движения (диафрагмы, межреберных мышц), благодаря чему происходит необходимое для занятий спортом усиление дыхательных движений и, как следствие, увеличение вентиляции легких.

Жизненная емкость легких (ЖЕЛ) — это та часть общей емкости легких, о которой судят по максимальному объему воздуха, который можно выдохнуть после максимального вдоха. ЖЕЛ подразделяется на 3 фракции: резервный объем выдоха, дыхательный объем, резервный объем вдоха. Она определяется с помощью водяного или сухого спирометра. При определении ЖЕЛ необходимо учитывать позу испытуемого: при вертикальном положении тела величина этого показателя наибольшая.

ЖЕЛ является одним из важнейших показателей функционального состояния аппарата внешнего дыхания (вот почему ее не следует рассматривать в разделе физического развития). Ее величины зависят как от размеров легких, так и от силы дыхательной мускулатуры. Индивидуальные значения ЖЕЛ оцениваются путем составления полученных при исследовании величин с должными. Предложен ряд формул, с помощью которых можно рассчитывать должные величины ЖЕЛ. Они в той или иной степени базируются на антропометрических данных и на возрасте испытуемых.

У спортсменов величина ЖЕЛ колеблется в чрезвычайно широких пределах — от 3 до 8 л. Описаны случаи увеличения ЖЕЛ у мужчин до 8,7 л, у женщин — до 5,3 л (В. В. Михайлов).

Наибольшие величины ЖЕЛ наблюдаются у спортсменов, тренирующихся преимущественно на выносливость и обладающих самой высокой кардио-респираторной производительностью. Из сказанного, естественно, не следует, что изменение ЖЕЛ может быть использовано для предсказания транспортных возможностей всей кардио-респираторной системы. Дело в том, что развитие аппарата внешнего дыхания может быть изолированным, при этом остальные звенья кардио-респираторной системы, и в частности сердечнососудистой системы, ограничивают транспорт кислорода.

Данные о величине ЖЕЛ могут иметь определенное практическое значение для тренера, так как максимальный дыхательный объем, который обычно достигается при предельных физических нагрузках, равен примерно 50% от ЖЕЛ (а у пловцов и гребцов до 60—80%, по В. В. Михайлову). Таким образом, зная величину ЖЕЛ, можно предсказать максимальную величину дыхательного объема и таким образом судить о степени эффективности легочной вентиляции при максимальном режиме физической нагрузки.

Совершенно очевидно, что чем больше максимальная величина дыхательного объема, тем экономичнее использование кислорода организмом. И наоборот, чем меньше дыхательный объем, тем выше частота дыханий (при прочих равных условиях) и, следовательно, большая часть потребленного организмом кислорода будет расходоваться на обеспечение работы самой дыхательной мускулатуры.

Легочная вентиляция (VE) является важнейшим показателем функционального состояния системы внешнего дыхания. Она характеризует собой объем воздуха, выдыхаемого из легких в течение 1 мин. Как известно, при вдохе не весь воздух поступает в легкие. Часть его остается в дыхательных путях (трахее, бронхах) и не имеет контакта с кровью, а поэтому не принимает непосредственного участия в газообмене. Это воздух анатомического мертвого пространства, объем которого составляет 140—180 см3 Кроме того, не весь воздух, поступающий в альвеолы, участвует в газообмене с кровью, так как кровоснабжение некоторых альвеол, даже у вполне здоровых людей, может быть ухудшенным или отсутствовать вообще. Этот воздух определяет объем так называемого альвеолярного мертвого пространства, величина которого в покое невелика. Суммарный объем анатомического и альвеолярного мертвого пространства составляет объем дыхательного или, как его еще называют, физиологического мертвого пространства. У спортсменов он составляет обычно 215—225 см3. Дыхательное мертвое пространство иногда неверно обозначают «вредным» пространством. Дело в том, что оно необходимо (совместно с верхними дыхательными путями) для полного увлажнения вдыхаемого воздуха и нагревания его до температуры тела.

Таким образом, определенная часть вдыхаемого воздуха (в покое примерно 30%) не участвует в газообмене, и лишь 70% его достигает альвеол и принимает непосредственное участие в газообмене с кровью. При физической нагрузке эффективность легочной вентиляции закономерно повышается: объем эффективной альвеолярной вентиляции достигает 85% от общей легочной вентиляции.

Легочная вентиляция равна произведению дыхательного объема (Vt) на частоту дыханий в 1 мин (/). Обе эти величины могут быть рассчитаны по спирограмме (см. рис. 25). На этой кривой регистрируются изменения объема каждого дыхательного движения. Если прибор оттарирован, то амплитуда каждой волны спирограммы, соответствующей дыхательному объему, может быть выражена в см3 или в мл. Зная скорость движения лентопротяжного механизма, по спирограмме можно легко подсчитать частоту дыханий.

У спортсменов в условиях покоя легочная вентиляция либо соответствует нормальным стандартам (5—12 л/мин), либо несколько превосходит их (18 л/мин и более). Важно отметить, что легочная вентиляция увеличивается обычно за счет углубления дыхания, а не за счет его учащения. Благодаря этому не происходит избыточного расхода энергии на работу дыхательной мускулатуры. При максимальной мышечной работе легочная вентиляция может достигать значительных величин: описан случай, когда она равнялась 220 л/мин (Новакки). Однако чаще всего легочная вентиляция достигает в этих условиях 60—120 л/мин BTPS. Более высокая Ve резко увеличивает запрос на снабжение дыхательной мускулатуры кислородом (до 1—4 л/мин).

Дыхательный объем у спортсменов весьма часто оказывается увеличенным. Он может достигать 1000—1300 мл. Наряду с этим у спортсменов могут быть и совершенно нормальные величины дыхательного объема — 400—700 мл.

Механизмы увеличения дыхательного объема у спортсменов не вполне ясны. Этот факт может быть объяснен и повышением общей емкости легких, в результате чего в легкие попадает большее количество воздуха. В тех случаях, когда у спортсменов регистрируется крайне низкая частота дыханий, увеличение дыхательного объема носит компенсаторный характер.

Частота дыханий у спортсменов в условиях покоя (отличных от условий основного обмена) колеблется в довольно широких пределах (нормальный диапазон колебаний этого показателя 10—16 движений в минуту). При физической нагрузке частота дыханий увеличивается пропорционально ее мощности, достигая 50—70 дыханий в минуту. При предельных режимах мышечной работы частота дыханий может быть еще больше.

Таким образом, легочная вентиляция при относительно легкой мышечной работе увеличивается за счет увеличения как дыхательного объема, так и частоты дыханий, а при напряженной мышечной работе — за счет увеличения частоты дыханий.

Обмен О2 и СО2 между легкими и кровью осуществляется через альвеоло-капиллярную мембрану. Она состоит из альвеолярной мембраны, межклеточной жидкости, содержащейся между альвеолой и капилляром, капиллярной мембраны, плазмы крови и стенки эритроцита. Эффективность переноса кислорода через такую аль-веоло-капиллярную мембрану характеризует состояние диффузионной способности легких, которая является количественной мерой переноса газа за единицу времени при данной разности его парциального давления по обе стороны мембраны.

Диффузионная способность легких определяется рядом факторов. Среди них важную роль играет поверхность диффузии. Речь идет о той поверхности, в которой происходит активный обмен газа между альвеолой и капилляром. Поверхность диффузии может уменьшаться как за счет запустевания альвеол, так и за счет числа действующих капилляров. Необходимо учитывать, что определенный объем крови из легочной артерии попадает в легочные вены по шунтам, минуя капиллярную сеть. Чем больше диффузионная поверхность, тем эффективнее осуществляется газообмен между легкими и кровью. При физической нагрузке, когда резко возрастает число активно функционирующих капилляров малого круга кровообращения, поверхность диффузии увеличивается, благодаря чему становится больше поток кислорода через альвеоло-капиллярную мембрану.

Другим фактором, определяющим легочную диффузию, является толщина альвеоло-капиллярной мембраны. Чем толще эта мембрана, тем ниже диффузионная способность легких, и наоборот. Недавно было показано, что под влиянием систематических физических нагрузок толщина альвеоло-капиллярной мембраны уменьшается, увеличивая тем самым диффузионную способность легких (Масорра).

В нормальных условиях диффузионная способность легких несколько превышает 15 мл О2 мин/мм рт. ст. При физической нагрузке она увеличивается более чем в 4 раза, достигая 65 мл О2 мин/мм рт. ст.

Кровь

Система крови выполняет самые разнообразные функции в организме. Не все они в равной мере являются объектом изучения спортивной медицины. Здесь рассматриваются дыхательная и защитная функции клеток крови.

Дыхательная функция крови обеспечивается эритроцитами, 95% сухой массы которых составляет пигмент гемоглобин, осуществляющий перенос кислорода. Эритроцит — дискообразная клетка, не содержащая ядра. Средний диаметр ее составляет 7,5 мкм. У здоровых мужчин число эритроцитов колеблется от 4,1 млн до 5,1 млн в 1 мкл, а у женщин — от 3,7 млн до 4,7 млн в 1 мкл (В. В. Соколов, И. А. Грибова, 1979). У спортсменов в условиях покоя число эритроцитов обычно соответствует нормальным стандартам.

Уменьшение числа эритроцитов (менее 4,0 млн у мужчин и 3,7 млн у женщин), или эритропения, является признаком анемии (малокровия). Патологическое значение имеет, естественно, не само по себе уменьшение числа клеток, а снижение общего количества гемоглобина, что отрицательно сказывается на кислородно-транспортной функции. Как уже говорилось, гемоглобин наряду с системой внешнего дыхания, аппаратом кровообращения является основным компонентом кардио-респираторной системы, обеспечивающей эффективное выполнение мышечной работы.

Содержание гемоглобина в крови у мужчин колеблется в пределах 130—160 г/л, а у женщин — 120—140 г/л. Зная объем циркулирующей крови, можно определить общее количество гемоглобина: у мужчин оно ориентировочно равно 800 г, а у женщин — 600 г. У спортсменов общее количество гемоглобина несколько выше, чем у нетренированных людей (Я. М. Коц, В. Д. Городецкий). Содержание его в периферической крови относительно снижено у тренирующихся на выносливость. Это, как уже говорилось связано с разрушением эритроцитов при длительных нагрузках и дефицитом образования этого пигмента крови.

И наконец, при анализе эритроцитов производят исследование скорости их оседания (СОЭ) в специальной пробирке в течение одного часа. У спортсменов она равна в среднем 4,8 мм/час, а у спортсменок — 7,3 мм/час. Эти величины несколько ниже тех, которые определяются числом эритроцитов, что, по-видимому, связано с особенностями химизма плазмы крови у спортсменов, наличием в ней положительно заряженных крупнодисперсных белковых молекул. При нагрузке СОЭ увеличивается. То же самое отмечается при восстановительных процессах.

При оценке лейкоцитарной формулы, приведенной в табл. 15, необходимо учитывать миогенный лейкоцитоз (увеличение числа лейкоцитов), впервые описанный А. П. Егоровым еще в 1926 г. Миогенный лейкоцитоз развивается при физической нагрузке и зависит от ее интенсивности и функционального состояния организма. Выделяют 3 стадии, а точнее, 3 формы миогенного лейкоцитоза. Первая форма наблюдается при легкой нагрузке. Лейкоцитоз достигает 10—12 тыс. в 1 мкл, лейкоцитарная формула сдвигается в сторону преобладания лимфоцитов (до 50% вместо 37% максимального значения), и поэтому ее называют лимфоцита р н о й.

Вторая форма обозначается как нейтрофильная. Она развивается при длительных и интенсивных нагрузках. Лейкоцитоз достигает 16—18 тыс. в 1 мкл, в периферической крови преобладают нейтрофилы, в том числе юные и палочкоядерные, что говорит о реакции костного мозга на физическую нагрузку.

И наконец, третья форма — интоксикационная. Она проявляется в двух вариантах: регенеративном, который характеризуется резким лейкоцитозом (до 35—50 тыс. в 1 мкл), резким ростом нейтрофилов (особенно молодых форм), уменьшением числа лимфоцитов, исчезновением эозинофилов, и дегенеративном, который имеет сходную с описанной лейкоцитарную формулу, но не столь выраженный лейкоцитоз (10—15 тыс. в 1 мкл).

Принято считать, что первая форма миогенного лейкоцитоза свидетельствует о высоком функциональном состоянии организма спортсмена. В этом случае она наблюдается не только при легкой, но и при напряженной работе.

Нейтрофильная и особенно интоксикационная формы миогенного лейкоцитоза указывают на снижение уровня функционального состояния организма (особенно если работа не была чрезмерной).

Представленные данные следует использовать в широкой практике врачебного контроля в процессе тренировочных занятий.








Дата добавления: 2016-02-27; просмотров: 907;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.033 сек.