Бесштанговая эксплуатация
Эти установки относятся к классу бесштанговых, что делает их более привлекательными.
Во-первых, они предназначены для эксплуатации средне- и высокодебитных скважин с достаточно большим диапазоном высоты подъема продукции. Во-вторых, привод глубинного насоса осуществляется электродвигателем, расположенным в скважине.
Питание двигателя осуществляется по силовому электрическому кабелю. Схема установки представлена на рис.41.
Рис.41.УЭЦН |
Установка состоит из погружного агрегата, включающего погружной электродвигатель (ПЭД) 1, протектор 2, многоступенчатый центробежный насос 3, спускаемого в скважину на колонне насосно-компрессорных труб 4. Электрический силовой кабель 5 закрепляется на трубах с помощью хомутов 6. Герметизация кабеля в устьевой арматуре осуществляется специальным сальником 7.
Наземное оборудование включает в себя кабельный барабан 8, трансформатор 9 и станцию управления 10. При необходимости установка комплектуется преобразователем частоты тока, позволяющим регулировать параметры погружного агрегата в широком диапазоне. Как погружной электродвигатель, так и погружной центробежный насос отличаются от обычных и характеризуются небольшим диаметром и значительной длиной.
Характеристики погружного центробежного насоса показаны на рис.42.
Каждый типоразмер погружного насоса предназначен для добычи из скважины определенного количества жидкости, равного оптимальной подаче насоса , соответствующей максимальному значению КПД — . Это условие требует выпуска промышленностью огромного количества типоразмеров погружных насосов, что экономически является нерентабельным.
Рис. 42-Характеристики погружного центробежного насоса |
С целью расширения области работы каждою типоразмера насоса допускается его работа в определенном диапазоне по подаче (от Q1 до Q2) и напору (от H1 до H2 ), который определяется следующим образом ( :
. (1)
Указанный диапазон на рис. 42 заштрихован.
На работу погружного центробежного насоса определенное влияние оказывает свободный газ, выделяющийся из нефти при снижении давления ниже давления насыщения, что приводит к изменению характеристик погружного центробежного насоса, как это показано на рис. 42.
Изменение характеристик зависит от объемного расходного газосодержания на входе в насос . Как видно из рис. 42 увеличение резко снижает подачу, напор и КПД насоса, т.е. оказывает отрицательное воздействие на эффективность работы погружного цен центробежного насоса. С целью защиты погружного центробежного насоса от вредного влияния свободного газа на приеме насоса устанавливается специальное устройство — насосный газосепаратор.
В настоящее время наиболее эффективным является газосепаратор МН-ГСЛ, выпускаемый в России и отвечающий мировому уровню. Рассмотренные установки обладают существенными преимуществами перед штанговыми насосными установками, главными из которых являются:
- более высокий КПД установки;
- высокая степень автоматизации установки
- высокая надежность работы при низких температурах воздуха
- достаточно широкая область применения, как по дебиту, так и по высоте подъема;
- компактность наземного оборудования.
; ;
Как показали результаты широкомасштабного и длительного применения УЭЦН в России, этими установками могут эксплуатироваться скважины с вязкостью продукции в несколько десятков (а в отдельных случаях и несколько сотен) мПа·с.
Добыча нефти в России этими установками превышает 60% общей добычи.Установки ЭЦН являются наиболее подходящим техническим средством для эксплуатации скважин на Арктическом шельфе.
Установки винтовых насосов
Эти установки, известные как установки с насосом типа MOINEAU, представляют значительный интерес для эксплуатации скважин на шельфе.
Глубинный винтовой насос (рис.44 состоит из ротора (рис.44а) в виде простой спирали (винта) с шагом и статора (рис. 44 б) в виде двойной спирали с шагом , в два раза превышающим шаг ротора.
На рис. 44 в показана часть насоса в сборе. Основными параметрами винтового насоса являются: диаметр ротора D, длина шага статора и эксцентриситет е. Полости, сформированные между ротором и статором, разделены. При вращении ротора эти полости «перемещаются» как по радиусу, так и по оси. «Перемещение» полостей приводит к проталкиванию жидкости снизу вверх, поэтому иногда этот насос называют насосом с перемещающейся полостью.
Обычно винтовой ротор выполняется из высокопрочной стали с хромированным или иным покрытием против истирания. Статор изготавливается из пластического материала и располагается в корпусе. К материалу для статора предъявляются достаточно жесткие требования. Приводы для данного насоса могут быть глубинными (погружной электродвигатель)или поверхност-ными. При использовании погружного электродвигателя агрегат спускается в скважину на насосно-компрессорных трубах, а питание к электродвигателю подводится по специальному кабелю (аналогично, как в УЭЦН).
В случае использования наземного привода вращение ротору насоса передается через колонну штанг. В качестве приводного двигателя служит электродвигатель, но могут использоваться и другие двигатели.
Рис. 44. Глубинный винтовой насос: а — ротор; б — статор; в — насос в сборе; 1 — корпус насоса; 2 — полость между статором и ротором |
Обычно используются электродвигатели с фиксированной скоростью либо с изменяющейся. В качестве вариатора скорости применяют частотный преобразователь тока.
Двигатели с фиксированной скоростью используют в скважинах с хорошей продуктивностью и небольшими динамическими уровнями, в других случаях — предпочтительнее двигатели с изменяющейся скоростью.
Установки винтовых насосов имеют широкий диапазон по параметрам: подача от 20 до 240 м3/сут, напор до 2000 м и предназначены для эксплуатации скважин с осложненными условиями:
— вязкость нефти — до 20 Па·с,
— повышенное содержание механических примесей (до 1%)
— повышенное содержание свободного газа,
— большие отклонения скважины от вертикали (до 70%).
Кроме того, установки винтовых насосов характеризуются низкими капитальными вложениями, являются малогабаритными, имеют низкий уровень шума и достаточно высокий КПД. Эти установки являются хорошим средством добычи нефти на морских платформах.
Новые средства добычи нефти
Одним из новых и перспективных для нефтепромысловой практики видов оборудования являются установки струйного насоса (СН). Струйные аппараты нашли широкое применение в самых различных отраслях промышленности, что связано с простотой их конструкции, отсутствием движущихся частей, высокой надежностью и возможностью работать в очень сложных условиях: при высоком содержании механических примесей и свободного газа, в условиях повышенных температур, высокой вязкости нефти, агрессивности инжектируемой продукции и т.д.
В настоящее время основной прирост добычи нефти во многих странах идет за счет районов, характеризующихся сложными природно-климатическими условиями. Совершенно естественно, что при этом существенно повышаются требования к надежности погружного оборудования для эксплуатации добывающих скважин, к увеличению его межремонтного периода. Кроме того, погружное оборудование должно работать в области повышенных температур, в условиях откачки жидкостей с высоким содержанием свободного газа, а зачастую и механических примесей, откачивать из скважины вязкую и сверхвязкую жидкость. Использовать в этих условиях существующее, широко известное, оборудование не всегда представляется возможным.
Для эксплуатации отдаленных месторождений, где отсутствуют дороги, линии электропередач и возможности бескомпрессорного газлифта, успешно применяются струйные установки. В этом случае приводом силовых наземных насосов служат газовые двигатели, работающие на попутном газе, поступающем из эксплуатируемых скважин.
В настоящее время учеными и специалистами России и США созданы различные компоновки струйных насосов: с погружным силовым приводом и с поверхностным, когда силовой насос устанавливается на поверхности.
Поверхностное оборудование струйных установок выпускается как для одной скважины (индивидуальный привод), так и для группы скважин (групповой привод) и содержит, как правило, блок силовых насосов, емкость для рабочей жидкости и гидроциклонный аппарат для очистки рабочей жидкости от механических примесей. Сепарация газа из добываемой жидкости происходит либо в специальной емкости (установка «Econodraulic» фирмы «Dresser Industries»), либо в емкости, совмещающей функции газосепаратора и хранилища рабочей жидкости (фирма «Tricodraulic»). В последнем случае в компоновку поверхностного оборудования входит подпорный насос, который осуществляет рециркуляцию очищенной рабочей жидкости через гидроциклон.
Погружное оборудование содержит стационарный или вставной струйный насос, однорядную колонну труб с пакером или двухрядный лифт (с параллельной или концентричной подвеской труб). Устье скважины оборудуется 4-ходовым краном, позволяющим менять схему циркуляции рабочей жидкости в скважине при спуске или подъеме вставного струйного насоса.
Схема и принцип действия струйного насоса
Строго говоря, струйный насос не является насосом в обычном понимании, так как он не создает избыточного напора на выходе. В струйном насосе происходит двойное преобразование гидравлической энергии: сначала потенциальная энергия рабочей жидкости преобразуется в кинетическую энергию, за счет чего, в поток рабочей жидкости, подмешивав ген инжектируемый поток. Смешанный поток (рабочий и инжектируемый), проходя через камеру смешения, поступает в диффузор, где происходит преобразование кинетической энергии смешанного потока в потенциальную энергию.
Принципиальная схема струйного насоса представлена на рис.45Насос состоит из следующих основных элементов:канала подвода рабочего агента 1, активного сопла 2, канала подвода инжектируемой жидкости 3 (в области сопла этот канал часто называют приемной камерой), камеры смешения 4 и диффузора 5.
Принцип работы струйного насоса заключается в следующем: рабочий агент при значительной потенциальной энергии подводится к соплу, где происходит преобразование потенциальной энергии в кинетическую. Струя рабочего агента, вытекающая из сопла, понижает давление в приемной камере, вследствие чего часть инжектируемой жидкости (продукция скважины) смешивается со струей рабочего агента и поступает в камеру смешения.
Рис. 45-Струйный насос |
В камере смешения рабочий агент и инжектируемая жидкость перемешиваются, выравниваются их скорости и давления, и смешанный поток поступает в диффузор. В диффузоре происходит плав-ное снижение кинетической энергии смешанного потока и рост его потенциальной энергии. На выходе из диффузора смешанный поток обладает потенциальной энергией, достаточной для подъема на поверхность. Несмотря на достаточно известный и понятный принцип работы этого насоса, расчет его основных элементов является чрезвычайно сложным, что связано со сложностью продукции скважины (инжектируемого потока). К настоящему времени преодолены практически все трудности проектирования таких насосов, и они начинают широко использоваться при эксплуатации скважин с осложненными условиями.
Осн.: 1. [93-151], 5. 185-208],
Контрольные вопросы:
1. Какие способы эксплуатации существуют на шельфе?
2. В каких вариантах осуществляется механизированный способ добычи?
3. На чем основывается работа струйного насоса?
4. За счет чего происходит подъем добычи углеводородов при фонтанном способе добычи?
5. Принцип работы тандемной установки.
6. В каких случаях применяют винтовые насосы?
7. В чем преимущества использование погружного центробежного насоса по сравнению с штанговыми насосами?
Лекция № 15. Строительство морских трубопроводов.
Развитие добычи нефти и газа на многих морях привело к необходимости строительства подводных морских трубопроводов различного назначения.
Первые подводные трубопроводы на Каспий начали прокладывать с конца 40-х и начала 1950 годов. Незначительное удаление нефтепромысловых акваторий Каспия от берега, небольшие глубины моря и потребность в трубопроводах малого диаметра предопределили технику и технологию строительства трубопроводов .
Первые трубопроводы диаметром 63-114мм прокладывали методом протаскивания по дну моря с помощью буровой лебедки.
В дальнейшем стали применять метод укладки трубопровода с плавучих средств, с киржима. Последний из указанных методов применяют и в настоящее время для прокладки внутрипромысловых трубопроводов.
Начало строительства подводных магистральных трубопроводов связано с открытием газового месторождения Южное в 60-х годах. Для транспортирования газа с этого месторождения на сушу потребовалось строительство магистрального газопровода в условиях открытого моря. Удаленность района добычи газа от берега обусловила разработку новой технологией строительства трубопроводов, по которой заготовка километровых плетей, их антикоррозионная изоляция, балластировка, оснастка транспортными понтонами производятся на береговой монтажно-сварочной площадке. При благоприятной погоде километровые плети с монтажной площадки сбрасывают в море и на плаву транспортируют в район стройтельства, где вместе с понтонами затапливают по трассе (метод свободного погружения). Отдельные плети трубопровода стыкуют на 40-тонном крановом судне, специально оборудованном для этой цели.
Для транспортировки плетей на плаву институт «Гипроморнефтегаз» разработал специальные понтоны с замковым устройством для автоматического отсоединения понтонов от трубопровода с поверхности воды без участия водолазов.
К настоящему времени по указанной технологии построены сотни километров подводных трубопроводов диаметром до 500 мм на глубинах моря до 30 м.
Практика показала, что укладка подводных трубопроводов методом свободного погружения успешно может быть применена при их строительстве буксировкой плетей на расстояние до 50- 60 км при волнении моря до двух баллов включительно.
Дата добавления: 2016-02-24; просмотров: 2439;