Интеллектуальные роботы (robotics)

Идея создания роботов далеко не нова. Само слово «робот» появилось в 20-х годах, как производное от чешского «робота» – тяжелой грязной работы. Его автор – чешский писатель Карел Чапек, описавший роботов в своем рассказе «Р.У.Р.».

Роботыэто электротехнические устройства, предназначенные для автоматизации человеческого труда.

Можно условно выделить несколько поколений в истории создания и развития робототехники:

I поколение.Роботы с жесткой схемой управления. Практически все современные промышленные роботы принадлежат к первому поколению. Фактически это программируемые манипуляторы.

II поколение.Адаптивные роботы с сенсорными устройствами. Есть образцы таких роботов, но в промышленности они пока используются мало.

III поколение.Самоорганизующиеся или интеллектуальные роботы. Это – конечная цель развития робототехники. Основные нерешенные проблемы при создании интеллектуальных роботов – проблема машинного зрения и адекватного хранения и обработки трехмерной визуальной информации.

В настоящее время в мире изготавливается более 60 000 роботов в год. Фактически робототехника сегодня – это инженерная наука, не отвергающая технологий ИИ, но не готовая пока к их внедрению в силу различных причин.

Обучение и самообучение (machine learning)

Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний на основе анализа и обобщения данных. Включает обучение по примерам (или индуктивное), а также традиционные подходы из теории распознавания образов.

В последние годы к этому направлению тесно примыкают стремительно развивающиеся системы data mining – анализа данных и knowledge discovery – поиска закономерностей в базах данных.

Распознавание образов (pattern recognition)

Традиционно – одно из направлений искусственного интеллекта, берущее начало у самых его истоков, но в настоящее время выделившееся в самостоятельную науку. Ее основной подход – описание классов объектов через определенные значения значимых признаков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Процедура распознавания использует чаще всего специальные математические процедуры и функции, разделяющие объекты на классы. Это направление близко к машинному обучению и тесно связано с нейрокибернетикой [Справочник по ИИ, 1990].








Дата добавления: 2016-02-09; просмотров: 1387;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.