СОЛНЕЧНЫЕ ЭЛЕКТРОСТАНЦИИ
Солнце — источник жизни на нашей планете и основной источник всех видов получаемой на ней энергии. В настоящее время большое внимание уделяется прямому использованию солнечной энергии. Заманчиво создание солнечных элементов для превращения энергии солнечной радиации в электрическую. В солнечных элементах используется явление фотоэффекта, т. е. вырывание электронов из тела под действием света.
Фотоэффект открыт Герцем в 1887 г. и детально исследован А. Г. Столетовым в 1888 г. Несмотря на то что фотоэффект известен давно, природа его пока полностью не изучена. Практическое использование фотоэффекта для получения электроэнергии стало возможным в последнее время в связи с применением полупроводников.
При соприкосновении полупроводников, имеющих электронную (n-типа) и дырочную (р-типа) проводимости, на границе образуется контактная разность потенциалов вследствие диффузии электронов. Если полупроводник с дырочной проводимостью освещается, то его электроны, поглощая кванты света, переходят на полупроводник с электронной проводимостью. В Замкнутой ~ цепи при этом образуется электрический ток.
В настоящее время наиболее совершенны кремниевые фотоэлементы, на которые действуют как направленные, так и рассеянные солнечные лучи. Кремниевые фотоэлементы могут одинаково успешно работать зимой и летом. Зимой снижение светового потока компенсируется увеличением КПД за счет понижения температуры. КПД кремниевых фотоэлементов достигает примерно 15%.
Из-за сложной технологии изготовления полупроводников и их большой стоимости кремниевые фотоэлементы применяются пока на уникальных установках, например на спутниках Земли. В будущем можно ожидать более широкое применение фотоэлектрических генераторов, преобразующих большие потоки энергии солнечной радиации.
Солнечная энергия может быть использована также в фотоэлектрических процессах, протекающих подобно естественному фотосинтезу органических веществ. Практическое освоение таких процессов позволило бы получать необходимую человечеству энергию и решить актуальную проблему истощения запасов органического топлива.
Огромное количество солнечной энергии, приходящей на Землю (примерно 0,15 МВт-ч на 1 м2 поверхности в год), в современных условиях затруднительно использовать из-за низкой плотности солнечной радиации и ее зависимости от состояния атмосферы (облачности) и времен» года. Возможно создание солнечных станций на искусственных спутниках Земли. В этом случае солнечная энергия будет аккумулироваться в течение 24 ч, а следовательно, эффективность работы станции не будет зависеть от облачного покрова. Передача энергии на Землю должна осуществляться по каналу УКВ. Принципиальная схема солнечной станции на искусственном спутнике и ее общий вид представлены на рис. 3.16, а, б. Размеры спутника-коллектора солнечной энергии (рис. 3,16, а) могут быть различны (от 20 до 100 км2) в зависимости от мощности станции.
Энергия от солнечных элементов космической станции должна передаваться на Землю с помощью антенны в виде достаточно узкого пучка УКВ-волн (длина волны «10 см). Приемная антенна на Земле будет принимать этот пучок энергии, который затем должен будет преобразовываться в энергию промышленной частоты.
Ожидается, что весь процесс будет характеризоваться достаточно высоким КПД. В настоящее время КПД преобразования энергии солнечными элементами на монокристаллах составляет 11%. Предполагается, что путем усовершенствования кремниевых элементов может быть достигнут КПД, равный 20%.
Расчетные значения КПД преобразования энергии на космических станциях приведены в табл. 3.3
Производство и передача электроэнергии солнечной электростанцией | КПД | ||
Достигнутые в настоящее время | Ожидаемые при существующей технологии | Ожидаемые за счет дальнейших разработок | |
Генерация УКВ-потока энергии Передача энергии с выхода генератора до створа антенны Улавливание и детектирование | 76,7 94,0 64,0 | 85,0 94,0 75,0 | 90,0 95,0 90,0 |
Общий КПД | 26,5 | 60,0 | 77,0 |
Космические солнечные станции могут быть спроектированы на полезную электрическую мощность 3^-20 ГВт и более. Размер солнечной батареи станции с полезной выходной мощностью 5 ГВт можно оценить исходя из КПД, равного 15%. Соответствующая такой станции суммарная поверхность солнечной батареи равна 20 км2. При этом передающая антенна должна иметь диаметр 1 км, приемная антенна — диаметр 7—10 км. Плотность пучка УКВ-волн со станции на Землю в этом случае составит всего 'Д нормальной плотности солнечной энергии, поэтому он не должен представлять опасности ни для летательных средств, ни для птиц. Вопрос, связанный с радиопомехами, не должен стать серьезной проблемой. Технические проблемы состоят только в улучшении достигнутой технологии и совсем не требуют разработки принципиально новых решений.
Большое внимание уделяется перспективе использования солнечной энергии в промежуточном процессе получения топлива. Так, энергия крупных солнечных станций может быть использована для синтеза топлива на основе углеводорода, например метанола из известняка и воды.
Наличие благоприятных условий во многих странах позволяет использовать для практических целей солнечную энергию. В направлении применения солнечной энергии уже выполнен ряд работ и доказана возможность ее использования для опреснения и дистилляции воды, приготовления пищи, нагревания воды, привода насосов и других целей. В целом несомненно, что человечество в будущем обратится к Солнцу — главному источнику энергии, которую и будет применять различными путями.
Один из путей использования энергии Солнца заключается в реализации проектов улавливания и накопления энергии фотосинтеза. Трудность реализации таких проектов заключается в низкой эффективности фотосинтеза как способа превращения солнечной энергии в химическую.
Считается, что благодаря фотосинтезу ежегодно образуется около 155 млрд. т сухой органической массы, главным образом целлюлозы, которую можно использовать как топливо. Однако из-за низкого КПД энергетического преобразования пришлось бы значительно увеличить посевные площади для получения энергии в необходимых количествах. Поэтому проводятся интенсивные исследования, направленные на увеличение КПД преобразования. При этом пытаются получить дешевую полезную массу растений, по возможности создавая оптимальный искусственный газовый состав и т. п. Так, по данным, полученным в США, если выращивать кукурузу как энергетическое топливо, то его стоимость будет сравнима с нынешней стоимостью ископаемого топлива; если использовать для этой цели хвойный лес, в котором бы на акр (1 акр=0,4 га) приходилось около 6 тыс. деревьев, и собирать урожай один раз в 12 лет, то вследствие замедленного роста деревьев и некоторых других факторов стоимость производимой из них энергии возрастет примерно вдвое по сравнению с энергией, получаемой от кукурузы. Многолетние растения имеют, однако, преимущество перед однолетними: урожай с них можно собирать в течение всего года в соответствии с потребностями, и при этом не возникает проблем, связанных с созданием огромных хранилищ «энергетических урожаев», которые заготавливают только в определенный сезон. Поэтому для производства энергии* обратились к быстро растущим лиственным деревьям, у которых после порубки корни дают побеги, что позволяет избежать ежегодных посадок.
На экспериментальных участках заброшенных пахотных земель в Центральной Пенсильвании выращиваются гибридные тополя. Один из гибридов, высаженный в количестве примерно 3700 деревьев на акр, «производит» энергию, которая оказывается заметно дешевле нефти и несколько дешевле угля. Такая плантация может давать около 681 млн. Вт/(м2-К) (120 млн. Btu) с акра в год при КПД энергетического преобразования 0,6%. Для обеспечения топливом средней электростанции мощностью 400 МВт потребуется плантация площадью 30 тыс. акров. Для снабжения топливом, получаемым на «энергетических плантациях», большей части электростанций в США требуется примерно 160—200 млн. акров даже при коэффициенте преобразования солнечной энергии в топливо, не превышающем 0,4%.
Дата добавления: 2016-02-02; просмотров: 713;