XI. У НИХ ВСЁ ВПЕРЕДИ

 

 

 

Ста лет не прошло со дня создания периодической системы элементов Д. И. Менделеевым. Совсем недавно заполнены ее последние клетки – искусственно создали люди те элементы, которых не смогла сохранить до наших дней природа. А уже подавляющее большинство этих элементов понадобилось сегодня человеку.

Чем глубже человек проникает в сокровенные тайны природы, чем лучше узнает свойства элементов, тем больше из них приглашает к себе на службу.

И нередко случается, что тот или иной элемент, в течение длительного времени считавшийся ни на что не пригодным, вдруг оказывается обладателем удивительных свойств, возникает огромная потребность в нем.

И тогда металлурги находят возможность удовлетворить эту потребность.

Так было о алюминием, считавшимся драгоценным еще в конце прошлого века. На него предъявила спрос авиация – и его производство в мире сегодня превосходит 3 млн. тонн.

Так было с вольфрамом – металлом сверхтвердых сплавов, электрических лампочек, качественных сталей.

Так было с цезием – металлом фотоэлементов.

Совсем недавно то же произошло, или, точнее, происходит, с титаном и германием.

Ну, а какой из еще не используемых металлов окажется завтра в центре внимания физиков, химиков, инженеров?

На это невозможно ответить. О металлах, не применяемых сегодня или мало применяемых, правильнее всего с убежденностью сказать: у них все впереди.

Познакомимся же с этими металлами, разбросанными по разным уголкам периодической системы элементов.

 

Клубок загадок

 

Есть в периодической системе элементов клетка, в которой проживает не один, а целых пятнадцать элементов. Их называют редкими землями. Они похожи друг на Друга, как братья‑близнецы. Но ведь и близнецы обладают индивидуальными чертами и свойствами характера. Обладают ими и редкие земли. Но, к сожалению, о них очень мало еще знают физики и химики.

Редкие земли вовсе не так уж редки. Некоторые из этих пятнадцати элементов встречаются чаще кобальта, цинка, свинца – металлов, чрезвычайно широко применяющихся в технике. Запасы церия в земной коре превышают запасы кадмия, сурьмы, молибдена, золота; 0,017 процента по весу земной коры составляют редкие земли. Это совсем не так уж мало.

Не так уж мало и минералов, содержащих редкие земли. Они встречаются и в обеих Америках, и в Скандинавии, и в Финляндии, у нас на Кольском полуострове, на Урале и в других местах.

В чем дело? Почему так плохо изучены эти элементы?

Потому, что они перепутаны друг с другом в соединениях в один клубок, распутать который чрезвычайно трудно. Ведь элементы этой группы имеют одинаковые внешние электронные оболочки, которыми определяются химические свойства элемента. Отличаются они друг от друга строением ядер и внутренних электронных оболочек. Даже для того, чтобы просто разобрать этот клубок тайн, выяснить, какие входят в него элементы, понадобилось более ста пятидесяти лет усилий нескольких поколений химиков. А некоторые из этих элементов и сегодня ни один химик не держал на ладони – они еще не получены в чистом виде.

В 1794 году финский химик Ю. Гадолин впервые выделил химическое соединение, которое назвал иттриевой землей. Землей в те времена называли невосстанавливаемые существующими методами окислы металлов. Гадолин считал, что он и нашел окисел нового металла – иттрия.

Иттрий не является жителем клетки, в которой обитают наши пятнадцать элементов. Он живет на один этаж выше, над этой клеткой‑общежитием. Но по химическим свойствам он схож с редкими землями, и в течение долгого времени его включали в их число.

В тесноте, да не в обиде.

 

Металлический иттрий получил в 1828 году немецкий химик Ф. Вёлер. Это был далеко не чистый металл. В нем в большом количестве содержались родственные металлы с нижнего этажа. Да и сегодня чистый иттрий по существу не получен. Даже удельного веса его как следует определить не удалось. Об остальных его свойствах и говорить нечего.

С иттрия и началась эпопея открытия редких земель. В 1843 году из иттриевой земли выделили две новые земли – эрбиеву и тербиеву. Еще через тридцать пять лет из эрбиевой земли выделили иттербиеву землю. Иттербиеву землю также удалось разложить, отделив скандиеву землю. А из эрбиевой земли еще позже выделили тулиеву землю.

Надо ли говорить, что все эти земли оказались окислами металлов из таинственного клубка все той же клетки‑общежития периодической системы? Впоследствии из них получили металлы эрбий, тербий, иттербий, тулий. Скандий оказался жителем отдельной клетки, расположенной, так сказать, на два этажа выше клетки‑общежития, непосредственно над клеткой иттрия.

Скандий, открытый в 1879 году шведским химиком Л. Нильсоном и названный им в честь своего полуострова, близок по свойствам редким землям. Он относится к числу очень рассеянных элементов, в чистом виде его удалось видеть очень немногим химикам. Удельный вес этого металла – около 3,1 г на куб. см, температура плавления – около 1300 градусов, кипения – 2400 градусов. Химически он менее активен, чем иттрий и редкие земли.

Может быть, этот металл и найдет еще себе широкое применение, если только его крайняя рассеянность не будет тормозить изучение его свойств и возможностей.

 

В иттриевой земле оказалось целых шесть элементов, причем два из них даже не из числа жителей клетки‑общежития. Но потянув за «иттриевый кончик», только начали распутывать клубок тайн. Одновременно его распутывали и с другой стороны, тянули за другой «кончик» – цериевую землю.

Ее получил в 1803 году шведский химик Берцелиус. Оказалось, что и она – смесь целого ряда земель. Из них в конце концов выделили металлы церий, лантан, празеодим, неодим и самарий.

Так распутывался клубок тайн. Последний, пятнадцатый элемент в природе обнаружить не удалось. Его получили в 1947 году искусственно, методами современной «ядерной алхимии».

Название «редкие земли» имеет сейчас чисто историческое значение, звучит как напоминание о тяжелой истории разделения этих элементов. Химики предложили для них другое имя – «лантаноиды», по имени лантана, первого в ряду элементов, населяющих клетку.

Лантаноиды имеют целый ряд общих химических свойств. Все они – металлы, быстро окисляющиеся на воздухе, медленно разлагающие воду при комнатной температуре и очень энергично при нагревании. Легко вступают в реакции и с большинством неметаллов.

Значительно разнообразнее физические свойства лантаноидов. Празеодим имеет, например, желтый цвет, он похож на медь; диспрозий больше всего напоминает серебро, а церий – свинец. Они резко отличаются, в частности, и по температуре плавления. Иттербий – тугоплавкий металл; чтобы его расплавить, нужна температура в 1780 градусов. А тербий плавится уже при 310 градусах. Самарий – один из самых твердых металлов, он соперничает в этом с закаленной сталью. А лантан и церий можно резать ножом.

Скажем сразу: далеко не все тайны этого клубка металлов разгадали сегодня ученые. И как раз здесь может скрываться еще много неоткрытого. Такого, что может вызвать переворот в целой отрасли техники или промышленности.

 

Редкоземельные металлы уже и сейчас находят широкие применения. Из церия (конечно, не чистого церия, а сплава его с целой кучей сожителей по клетке периодической системы, так называемого мишметалла) делают камни для зажигалок. Стоит слегка ударить по этому сплаву или про‑вести им по неровной поверхности, как возникнет целый фейерверк искр. Это горят отколовшиеся крупинки церия: ведь он вспыхивает при температуре в 165 градусов и горит ярким, ослепительным цветом.

Церий – один из самых изученных лантаноидов. Открывший его в 1803 году шведский химик И. Берцелиус дал ему имя в честь недавно открытой планеты Цереры. Эта древняя традиция давать названия металлам по имени небесных тел, мы знаем, была продолжена даже в наши дни.

Плотность церия – 6,8 г на куб. см, температура плавления – около 793 градусов, кипения – около 2690 градусов.

Ну, а чем замечателен лантан – элемент, давший название целой плеяде металлов?

Лантановую землю впервые выделил в 1839 году шведский химик К. Мосандер. Имя новому металлу он дал от греческого слова «скрываюсь»– «скрывающийся». Однако никаких особых свойств этот элемент, как позже оказалось, не таит в себе. Его удельный вес – 6,1 г на куб. см, температура плавления – 820–850 градусов. А может быть, просто не открыли этих особых свойств в лантане и он до сего дня честно оправдывает свое имя?..

Двойником лантана является другой редкоземельный элемент – празеодим. Имя это в переводе с греческого означает «бледно‑зеленый двойник» – так его назвал австрийский химик К. Вельсбах, впервые отделивший его соли. Он же впервые отделил соли еще одного двойника лантана – металла неодима, что в переводе означает «новый двойник».

Название «самарий» – а это имя еще одного члена семейства лантаноидов– как будто бы свидетельствует о том, что он впервые получен русским ученым. Но это не так. Впервые открыл его в 1879 году француз Л. Буабодран и назвал его по имени минерала самарскита, в котором его обнаружил. Но и минерал этот назван не по имени города Самары, а в честь русского горного деятеля В. Е. Самарского. Таково путешествие имени в периодическую систему элементов.

Сам самарий ничем из других лантаноидов не выделяется. Только некоторые соединения его обладают способностью ярко флоуресцировать желто‑оранжевым светом. Это их свойство широко используется в фосфоресцирующих смесях.

Такое же применение имеют соли и самого редкого из редкоземельных элементов (не считая прометия, которого вообще нет в природе и который был изготовлен искусственным путем) – европия. Происхождение этого названия, данного в 1901 году французом Э. Демарсе, не вызывает сомнений.

А вот название «гадолиний» дано в честь финского химика Ю. Га‑долина швейцарским химиком Ж. Мариньяком, открывшим этот металл в 1880 году. Некоторые соли этого металла сыграли серьезную роль в приближении человека к абсолютному нулю. Дело в том, что, размагничиваясь, эти соединения охлаждаются. В намагниченном виде их охлаждают до предельно возможных температур, а затем размагничивают. Происходит дальнейшее, еще более глубокое охлаждение.

О тербии, двойнике гадолиния, практически ничего не известно, кроме того, что его соли окрашивают соли гадолиния в желтый цвет.

А может быть…

Окислы тербия окрашивают в желтый цвет и окислы другого лантаноида– диспрозия, что в переводе означает «труднодоступный». Это очень интересный металл, также практически почти не изученный. А ведь его соединения являются самыми парамагнитными из всех веществ. Окись этого металла в 15 раз парамагнитнее окиси железа. Впрочем, в парамагнитности лавры первенства с соединениями диспрозия делят соединения другого лантаноида – гольмия, открытого в 1879 году шведом П. Клеве и названного им в честь Стокгольма. Больше и об этом металле, кажется, ничего не известно.

Крылья этой космической электростанции – полупроводниковые германиевые пластинки.

 

Земляк тербия – эрбий (они были открыты в одном и том же минерале) отличается тем, что его окислы и соли окрашены в красивый ярко‑розовый цвет. Раскаленная окись эрбия светится ярким зеленым цветом. Вот и весь комплекс известных особенностей эрбия, отнюдь не в ничтожных, скорее в значительных количествах встречающегося в иттриевых землях.

Придумывая название для открытого им нового элемента, шведский химик П. Клеве проявил редкую в таких случаях оригинальность пристрастий. Он назвал его в честь Туле – легендарной страны, которая, как считали древние греки, находится на крайнем севере земли. Металл получил название «тулий».

Тулий давно ждет применения. По своим свойствам он может служить отличным материалом для изготовления генераторов медицинских рентгеновских аппаратов. Можно приготовлять из него и отличные люминофоры. Но все пока упирается в трудность получения этого металла в чистом виде.

Впрочем, если уж говорить о названиях, то больше всего повезло в этом смысле небольшому селению Иттербю. Находится оно в Швеции, на острове Руслаген. В одной из каменоломен близ этого селения и был найден знаменитый минерал гадолиний, из которого выделили четыре минерала, получившие название в честь этой шведской деревушки – эрбий, тербий, иттрий и иттербий. О первых трех мы уже говорили. О четвертом трудно сказать что‑нибудь кроме того, что свойства его изучены еще далеко не в полной мере.

Лютеций – последний элемент семейства лантаноидов. Впервые его в 1907 году выделил французский химик Т. Урбен, запечатлевший в названии этого металла латинское наименование Парижа. Металлический лютеций не получен до сих пор.

Нет, еще далеко не распутан клубок тайн, скрытых в переплетении этих пятнадцати металлов! Сколько интересных и важных вопросов ждут разрешения!

Металлурги заметили, что добавки редкоземельных металлов – их пестрого сплава – сообщают магниевым и алюминиевым сплавам важнейшие свойства. Какой из добавляемых металлов обладает сильнейшими легирующими свойствами? Может быть завтра один или несколько металлов из семейства редких земель станут такими же важными витаминами крылатых металлов, как вольфрам, хром и никель сегодня важны для получения качественной стали.

Церий – его тоже добавляли в виде пестрого сплава – улучшает свойства сплавов никеля и хрома. Может быть, в редких землях скрываются витамины витаминов?

Добавка 8 процентов церия к алюминиево‑медному сплаву делает его кислотоупорным и стойким в воде. А каким будет этот сплав, если в него добавить 8 процентов эрбия или 8 процентов лютеция, ни одной крупинки которого еще не получено в чистом виде?

Клубок тайн еще ждет своих исследователей. Причем не одного, а многих. Одному тут явно не справиться.

 








Дата добавления: 2016-01-29; просмотров: 785;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.