Самый прочный, самый тугоплавкий

 

Знаменитый шведский химик Карл Шееле (его имя мы уже несколько раз упоминали на этих страницах) был по профессии аптекарем. Он родился в 1742 году, умер в 1786 году членом Стокгольмской Академии наук. Все свободное от работы время он отдавал химическим опытам. Немало блестящих открытий сделал за недолгие годы жизни этот король эксперимента! Он открыл кислород, хлор, барий, марганец. Ему же принадлежит и честь открытия вольфрама.

Почти сто лет это открытие не имело последствий: вольфрам оставался бесполезным металлом. Только в 1864 году англичанин Роберт Мюшет впервые ввел вольфрам в сталь. Почти 5,5 процента вольфрама содержала эта сталь, названная «самокалом Мюшета». И это было вторым рождением металла.

До этого времени скорость резания металла не превышала 5 метров в минуту. Именно с этой максимальной скоростью сбегала стружка из‑под токарных и строгальных резцов. При повышении скорости резания сталь резца быстро размягчалась и тупилась.

Резцы, сделанные из «самокала Мюшета», позволили в полтора раза увеличить скорость резания, довести скорость сбегания стружки до 7,5 м в минуту.

Через сорок лет появилась быстрорежущая сталь. Скорость резания выросла до 18 м в минуту. Сталь, позволившая сделать этот прыжок, содержала до 8 процентов вольфрама. А еще через несколько лет вольфрам позволил поднять скорость резания до 35 м в минуту. В семь раз выросла производительность металлорежущих станков!

Сталь не смогла выдержать большей скорости резания, но вольфрам поднял ее еще выше. В 1907 году был создан первый «твердый сплав». В нем не было по существу железа – только вольфрам, хром и кобальт. Этот сплав дал возможность поднять скорость резания до 45 м в минуту. Современные твердые металлорежущие сплавы еще подняли эту цифру. Сегодня она составляет уже тысячи метров в минуту. И в них основным составляющим является карбид вольфрама.

Впрочем, тайной вольфрама владели еще древние металлурги. В металле некоторых образцов дамасских сталей также обнаружено присутствие вольфрама.

Вольфрам был первой легирующей добавкой к сталям, и, конечно, одним из первых его применений была добавка к орудийному металлу. Он резко поднял его стойкость. Это сразу же оценили немецкие инженеры, и поэтому в годы первой мировой войны легкие пушки германского производства выдерживали до 15 тысяч выстрелов, тогда как французские выходили из строя после 8 тысяч. А добыча вольфрама в это время превзошла добычу никеля, сурьмы и многих других элементов: с 200–300 тонн в год в начале века она в 1918 году достигла 32 тысяч тонн. Впрочем, уже в 1921 году она снова упала до 5 тысяч тонн. В 1941 году добыча вольфрамового концентрата достигла (без СССР) 47 тысяч тонн. Основными поставщиками его являются Китай, Бирма, США, Боливия, Португалия.

В настоящее время 80 процентов всего добываемого вольфрама идет на легирующие добавки в качественные стали. Около 15 процентов расходуется на изготовление твердых сплавов современных резцов. Оставшиеся 5 процентов перерабатываются на чистый вольфрам – металл, обладающий удивительными свойствами.

Попробуйте расплавить этот серебристо‑белый металл.

Вам придется поднять его температуру до 3410 градусов. Немногие из металлов при такой температуре остаются и в жидком‑то состоянии. Большинство кипит при более низкой температуре.

А вольфрам кипит только при 6000 градусов. Даже на поверхности Солнца он может еще находиться в жидком, а не в парообразном состоянии!

Чистый вольфрам обладает и невероятной прочностью, превосходящей прочность лучшей стали. Временное сопротивление разрыву вольфрамовой проволоки достигает 400 кг на кв. мм. И эту фантастическую прочность вольфрам сохраняет даже при нагреве до 800 градусов!

Вместе с тем чистый вольфрам обладает завидной пластичностью. Из него можно вытянуть проволоку, 80 км которой будут весить всего 200 г!

На пьедестале почета.

 

Ферровольфрам выплавляют в дуговых электропечах в присутствии угля с добавкой железного лома и флюсов. Чистый вольфрам в виде порошка получают восстановлением окисла вольфрама водородом или углеродом. Полученный тонкий порошок прессуют и спекают, нагревая пропусканием электрического тока до 3000 градусов.

Из этого вольфрама и вытягивают нити накаливания электроламп, штампуют детали радиоламп, рентгеновских трубок, электроды для контактной и атомно‑водородной сварки и другие детали машин и устройств, которым предстоит работать при сверхвысоких температурах.

Таков вольфрам – самый прочный и самый тугоплавкий из всех металлов, самоотверженный работник в самых горячих местах машин и приборов, созданных человеком.

 

Сосед «благородных»

 

Этот металл открывали много раз. Впервые это сделал Д. И. Менделеев, предсказавший его свойства. Это было действительным, хотя и чисто умозрительным открытием. Затем о том, что его наконец получили, сообщали С. Керн в 1877 году, Баррьер в 1894 году, Огава в 1908 году и т. д. Может быть, некоторые из этих ученых действительно имели дело с «дви‑марганцем» Менделеева. Однако утвердить окончательно свое открытие они не могли. Загадка оставалась неразгаданной.

В 1922 году немецкие химики В. и И. Ноддак начали систематические поиски аналогов марганца. Из килограмма руды, содержащей молибден, вольфрам, рутений и осмий, они выделили 0,2 грамма сплава этих элементов. Спектральный анализ указал, что здесь содержится и еще неизвестный элемент. Ученые сообщили о своем открытии в 1925 году. В честь Рейнской области они назвали его рением.

Это тяжелый (тяжелее золота, ведь его удельный вес 20 г на куб. см) серебристо‑белый металл, похожий внешне на серебро. Он чрезвычайно тугоплавок. Только вольфрам имеет более высокую, чем рений, температуру плавления: 3170 градусов надо, чтобы расплавить рений. Кипит он при фантастически высокой температуре – 5870 градусов!

Рений обладает исключительной химической стойкостью. При нагреве до температуры в 1500 градусов он почти не соединяется с кислородом. Даже вольфрам уступает ему в этом. К тому же он меньше, чем вольфрам, распыляется при высокой температуре, поэтому вольфрамовые нити накала иногда покрывают рением. Есть сообщения, что и прочность рения при высоких температурах выше, чем прочность вольфрама.

Рений отличается исключительной стойкостью и против действия кислот, поэтому его пытаются добавлять в нержавеющие стали. Может быть, со временем он станет важнейшим витамином стали.

Вероятно, рений будет широко применяться для изготовления термопар.

Еще в очень небольших количествах добывается этот металл, чтобы можно было начать его широкое применение.

Рений – типичный рассеянный элемент. Только в некоторых молибденовых рудах иногда содержится до 0,01 процента рения. Из таких руд, из отходов молибденового производства его и добывают.

Справа в периодической системе элементов с рением соседствуют благородные металлы. Но он ближе к помощникам стали, к вольфраму, который является его соседом с другой стороны.

 








Дата добавления: 2016-01-29; просмотров: 1735;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.