Усилительный каскад на БТ с ОЭ

Среди многочисленных вариантов усилительных каскадов на БТ самое широкое применение находит каскад с ОЭ, имеющий максимальный коэффициент передачи по мощности , вариант схемы которого приведен на рисунке 2.9.

 
 

Если входного сигнала нет, то каскад работает в режиме покоя. С помощью резистора задается ток покоя базы . Ток покоя коллектора . Напряжение коллектор-эмиттер покоя . Отметим, что в режиме покоя напряжение составляет десятки и сотни мВ (обычно 0,5…0,8 В). При подаче на вход положительной полуволны синусоидального сигнала будет возрастать ток базы, а, следовательно, и ток коллектора. В результате напряжение на возрастет, а напряжение на коллекторе уменьшится, т.е. произойдет формирование отрицательной полуволны выходного напряжения. Таким образом, каскад с ОЭ осуществляет инверсию фазы входного сигнала на .

Графически проиллюстрировать работу каскада с ОЭ можно, используя входные и выходные статические характеристики БТ, путем построения его динамических характеристик (ДХ) [5,6]. Вследствие слабой зависимости входной проводимости транзистора g от величины нагрузки, входные статические и динамические характеристики практически совпадают. Выходные ДХ - это прямые линии, которые в координатах соответствуют уравнениям, выражающим зависимости между постоянными и переменными значениями токов и напряжений на нагрузках каскада по постоянному и переменному току.

Процесс построения выходных динамических характеристик (нагрузочных прямых по постоянному - , переменному - току) понятен из рисунка 2.10.


Следует отметить, что простое построение ДХ возможно только при активной нагрузке, т.е. в области СЧ АЧХ (см. рис.2.2), в областях НЧ и ВЧ нагрузочные прямые трансформируются в сложные кривые.

Построение ДХ и их использование для графического расчета усилительного каскада подробно описано в [5,6].

Нагрузки рассматриваемого каскада по постоянному и переменному току определяются как:

Координаты рабочей точки для малосигнальных усилительных каскадов выбирают на линейных участках входной и выходной ВАХ БТ, используя в малосигнальных усилительных каскадах так называемый режим (класс) усиления А. Другие режимы работы каскадов чаще используются в усилителях мощности, и будут рассмотрены в соответствующем разделе.

При отсутствии в справочных данных ВАХ БТ, координаты рабочей точки могут быть определены аналитическим путем (см. рисунок 2.10):

,

где - напряжение нелинейного участка выходных статических ВАХ транзистора, ;

 
 

Если для малосигнальных каскадов в результате расчета по вышеприведенным формулам значения и окажутся, соответственно, меньше 2 В и 1 мА, то, если не предъявляются дополнительные требования к экономичности каскада, рекомендуется брать те значения координат рабочей точки, при которых приводятся справочные данные и гарантируются оптимальные частотные свойства транзистора.

Для расчета параметров усилительного каскада по переменному току удобно использовать методику, описанную в разделе 2.3, а БТ представлять моделью, предложенной в разделе 2.4.1.

Полная электрическая схема усилительного каскада с ОЭ приведена на рис.2.11.

 
 

В отличие от ранее рассмотренного каскада (рис.2.9) здесь применена эмиттерная схема термостабилизации ( ), обеспечивающая лучшую стабильность режима покоя, принцип ее работы будет рассмотрен далее. Конденсатор необходим для шунтирования с целью соединения эмиттера транзистора с общим проводом на частотах сигнала (устранения обратной связи на частотах сигнала, вид и характер этой связи будет рассмотрен в соответствующем разделе).

Приведем эквивалентную схему каскада для частот сигнала (рис.2.12).

С целью упрощения анализа каскада выделяют на АЧХ области НЧ, СЧ и ВЧ (см. рис.2.2), и проводят анализ отдельно для каждой частотной области.

Эквивалентная схема каскада в области СЧ приведена на рисунке 2.13.

Как видно, эта схема не содержит реактивных элементов, т.к. в области СЧ влиянием на АЧХ разделительных ( ) и блокировочных ( ) емкостей уже можно пренебречь, а влияние инерционности БТ и еще незначительно.

Проведя анализ схемы, найдем, что

,

 
 

где ;

,

где ;

.

Эти соотношения получены в предположении, что низкочастотное значение внутренней проводимости транзистора много меньше и . Это условие (если не будет оговорено особо) будет действовать и при дальнейшем анализе усилительных каскадов на БТ. Такое допущение справедливо потому, что БТ является токовым прибором и особенно эффективен при работе на низкоомную нагрузку.

 
 

Эквивалентная схема каскада в области ВЧприведена на рисунке 2.14.

Поведение АЧХ в этой области определяется влиянием инерционности транзистора и емкости .

Проведя анализ согласно методике раздела 2.4, получим выражение для коэффициента передачи каскада в области ВЧ:

,

где - постоянная времени каскада в области ВЧ.

Постоянную времени каскада для удобства анализа представим так:

,

где - постоянная времени транзистора ( ),

;

- постоянная времени выходной цепи транзистора,

;

- постоянная времени нагрузки,

.

Входную проводимость представим в виде:

,

где - входная динамическая емкость каскада,

.

Выходная проводимость определится как

,

где - выходная емкость каскада, .

Выражения для относительного коэффициента передачи и коэффициента частотных искажений в комментариях не нуждаются:

,

,

,

,

По приведенным выражениям строится АЧХ и ФЧХ каскада в области ВЧ.

Связь коэффициента частотных искажений и выражается как

.

В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который можно скомпенсировать увеличением верхней граничной частоты каскадов до

.

 
 

Эквивалентная схема каскада в области НЧприведена на рисунке 2.15.

Поведение АЧХ в этой области определяется влиянием разделительных ( ) и блокировочных ( ) емкостей.

Влияние этих емкостей на коэффициент частотных искажений в области НЧ каскада можно определить отдельно, используя принцип суперпозиции. Общий коэффициент частотных искажений в области НЧ определится как

,

где N - число цепей формирующих АЧХ в области НЧ.

Рассмотрим влияние на АЧХ каскада. Проведя анализ согласно методике раздела 2.4, получим выражение для коэффициента передачи в области НЧ:

,

где - постоянная времени разделительной цепи в области НЧ.

Постоянная времени разделительных цепей в общем случае может быть определена по формуле

,

где - эквивалентное сопротивление, стоящее слева от (обычно это выходное сопротивление предыдущего каскада или внутреннее сопротивление источника сигнала), - эквивалентное сопротивление, стоящее справа от (обычно это входное сопротивление следующего каскада или сопротивление нагрузки).

Для рассматриваемой цепи постоянная времени равна:

.

Выражения для относительного коэффициента передачи и коэффициента частотных искажений в области НЧ таковы:

,

,

,

,

и в комментариях не нуждаются. По этим выражениям оценивается влияние конкретной цепи на АЧХ и ФЧХ каскада в области НЧ.

Связь между коэффициентом частотных искажений и нижней граничной частотой выражается формулой

.

Аналогичным образом учитывается влияние других разделительных и блокировочных цепей, только для блокировочной эмиттерной цепи постоянная времени приблизительно оценивается величиной т.к. сопротивление БТ со стороны эмиттера приблизительно равно (см. подраздел 2.4.1), а влиянием в большинстве случаев можно пренебречь, т.к. обычно << .

Результирующую АЧХ и ФЧХ каскада в области НЧ можно построить, используя уже упоминавшийся принцип суперпозиции.

В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который в области НЧ можно скомпенсировать уменьшением нижней граничной частоты каскадов до

.








Дата добавления: 2016-01-18; просмотров: 3450;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.026 сек.