НЕРАВНОВЕСНАЯ ТЕРМОДИНАМИКА И. ПРИГОЖИНА


Эта концепция имеет несколько иной аспект. Ее основоположник И. Пригожин отметил, что в теоретической химии и физике возникло новое направление, находящееся в самом начале своего развития, в нем важнейшую роль будут играть термодинамические концепции. Задачей новой науки является доказательство того факта, что неравновесие может быть причиной порядка.

До недавнего прошлого физическая наука вполне обходилась равновесной термодинамикой. Предметом этой дисциплины являются процессы преобразования энергии, протекающие в замкнутых системах, состояние которых близко к термодинамическому равновесию. Но в подобных системах для самоорганизации нет места. Поэтому нужно создать новую термодинамику, способную отражать скачкообразные процессы.

Чтобы система могла не только поддерживать, но и создавать упорядоченность из хаоса, она непременно должна быть открытой и иметь приток энергии и вещества извне. Именно такие системы названы Пригожиным диссипативными. Весь доступный нашему познанию мир состоит именно из таких систем, и в этом мире повсюду обнаруживается эволюция, разнообразие форм и неустойчивость.

В ходе эволюционного этапа развития диссипативная система достигает в силу самого характера развития состояния сильной неравновесности и теряет устойчивость. Это происходит при критических значениях управляющих параметров, и дальнейшая зависимость происходящих процессов от действующих сил приобретает крайне нелинейный характер.

Разрешением возникшей кризисной ситуации служит быстрый переход диссипативной системы в одно из возможных устойчивых состояний, качественно отличающихся от исходного. Пригожин трактует такой переход как приспособление диссипативной системы к внешним условиям, чем обеспечивается ее выживание. Это и есть акт самоорганизации системы.

Самоорганизация проявляется в форме гигантской коллективной флуктуации, которая не имеет ничего общего со статистическими законами физики. В состоянии перехода элементы системы ведут себя коррелированно, хотя до этого они пребывали в хаотическом движении.

В качестве примера можно взять этап перехода от однородной Вселенной к структурной. В начале этого перехода Вселенная представляла собой смесь трех почти не взаимодействовавших между собой субстанций: лептонов, фотонов и барионного вещества. Температура (3000 К) и плотность вещества к этому времени уже были достаточно низкими, и в этих условиях ни одно из четырех фундаментальных взаимодействий не могло обеспечить процессы нарастания сложности и упорядоченности вещества. Перспективой было образование «лептонной пустыни», аналога «тепловой смерти». Но этого не случилось, произошел скачок системы в качественно новое состояние: во Вселенной возникли разномасштабные структуры, находящиеся в сугубо неравновесных состояниях. Для объяснения этого процесса и привлекаются идеи самоорганизации материи. С формальной точки зрения Вселенную можно считать диссипативной системой, так как она открыта (если считать окружающей средой Вселенной вакуум); неравновесна (в ней нарушен равновесный состав вещества и антивещества, она состоит из трех почти не взаимодействующих между собой частей, каждая из которых имеет свою температуру); температура и плотность вещества на данном этапе являются критическими, так как ни одно из физических взаимодействий не обеспечивает дальнейшего развития Вселенной. Все это и привело к скачку, образованию структурной Вселенной.

Переход диссипативной системы из критического состояния в устойчивое неоднозначен. Сложные неравновесные системы имеют возможность перейти из неустойчивого в одно из нескольких дискретных устойчивых состояний. В какое именно из них совершится переход - дело случая. В системе, пребывающей в критическом состоянии, развиваются сильные флуктуации, под действием одной из них происходит скачок в конкретное устойчивое состояние. Поскольку флуктуации случайны, то и «выбор» конечного состояния оказывается случайным. Но после совершения перехода назад возврата нет. Скачок носит одноразовый и необратимый характер. Критическое значение параметров системы, при которых возможен неоднозначный переход в новое состояние, называют точкой бифуркации.

Обнаружение феномена бифуркации, как считает Пригожин, ввело в физику элемент исторического подхода. Любое описание системы, претерпевшей бифуркацию, требует включения как вероятностных представлений, так и классического детерминизма. Находясь между двумя точками бифуркации, система развивается закономерно, тогда как вблизи точек бифуркации существенную роль играют флуктуации, которые и определяют, какой из путей дальнейшего развития будет избран.

Таким образом, самоорганизация заставляет по-новому взглянуть на соотношение случайного и закономерного в развитии систем, в природе в целом. В развитии выделяются две фазы: плавная эволюция, ход которой достаточно закономерен и жестко детерминирован, и скачки в точках бифуркации, протекающие случайным образом и поэтому случайно определяющие последующий закономерный эволюционный этап вплоть до следующего скачка в новой критической точке.

В том, что точки бифуркации - это не абстракция, имеет возможность убедиться каждый человек. У любого человека возникали ситуации, когда он стоял перед выбором своего дальнейшего жизненного пути и случайное стечение обстоятельств определяло этот путь. Например, человек собирался уехать учиться в другой город, но сломал себе ногу и должен был остаться дома. Так случай определил последующий жизненный этап. Подобные примеры можно продолжить, каждый может привести их из своей жизни.

Важным моментом в разработке проблем неравновесной термодинамики является ее отношение к проблеме необратимости времени. Самоорганизация не подчиняется статистическим законам, но при ее протекании в явном виде обнаруживается «стрела времени» - процесс скачка невозможно повернуть вспять. Классическая механика, основанная на динамических законах, не исключает возможности обращения времени. Так, поменяв в уравнениях, описывающих движение тела, знак плюс на минус перед временем и скоростью, мы получим описание движения этого тела по пройденному пути в обратном направлении. И хотя весь наш опыт убеждает в невозможности повернуть время вспять, такая возможность теоретически не исключалась. Другое дело - статистические законы, в том числе законы термодинамики. Для систем, состоящих из очень большого числа частиц, неизбежно вытекает однонаправленность процессов природы.

Проблемами самоорганизации также занимается теория катастроф. Катастрофами называют скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. Эта теория дает универсальный метод исследования всех скачкообразных переходов, разрывов, внезапных качественных изменений.

Сегодня картина мира выглядит так. Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых протекает по единому алгоритму. В основе этого алгоритма заложена присущая материи способность к самоорганизации, проявляющаяся в критических точках системы. Самая крупная из известных человеку систем - это развивающаяся Вселенная.

План семинарского занятия (2 часа)

1. Классическая и современная концепции развития в естествознании.

2. Сущность идеи самоорганизации материи.

3. Основы синергетики и неравновесной термодинамики.








Дата добавления: 2016-01-16; просмотров: 830;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.