Нейронные сети и нейрокомпьютер
В последнее время активно ведутся также работы по построению моделей обработки информации в нервной системе. Большинство моделей основывается на схеме формального нейрона У.МакКаллока и У.Питтса, согласно которой нейрон представляет собой пороговый элемент, на входах которого имеются возбуждающие и тормозящие синапсы; в этом нейроне определяется взвешенная сумма входных сигналов (с учетом весов синапсов), а при превышении этой суммой порога нейрона вырабатывается выходной сигнал.
В моделях уже построены нейронные сети, выполняющие различные алгоритмы обработки информации: ассоциативная память, категоризация (разбиение множества образов на кластеры, состоящие из подобных друг другу образов), топологически корректное отображение одного пространства переменных в другое, распознавание зрительных образов, инвариантное относительно деформаций и сдвигов в пространстве решение задач комбинаторной оптимизации. Подавляющее число работ относится к исследованию алгоритмов нейросетей с прагматическими целями.
Предполагается, что практические задачи будут решаться нейрокомпьютерами – искусственными нейроподобными сетями, созданными на основе микроэлектронных вычислительных систем. Спектр задач для разрабатываемых нейрокомпьютеров достаточно широк: распознавание зрительных и звуковых образов, создание экспертных систем и их аналогов, управление роботами, создание нейропротезов для людей, потерявших слух или зрение. Достоинства нейрокомпьютеров – параллельная обработка информации и способность к обучению.
Несмотря на чрезвычайную активность исследований по нейронным сетям и нейрокомпьютерам, многое в этих исследованиях настораживает. Ведь изучаемые алгоритмы выглядят как бы «вырванным куском» из общего осмысления работы нервной системы. Часто исследуются те алгоритмы, для которых удается построить хорошие модели, а не те, что наиболее важны для понимания свойств мышления, работы мозга и для создания систем искусственного интеллекта. Задачи, решаемые этими алгоритмами, оторваны от эволюционного контекста, в них практически не рассматривается, каким образом и почему возникли те или иные системы обработки информации. Настораживает также чрезмерная упрощенность понимания работы нейронных сетей, при котором нейроны осмыслены лишь как суммирующие пороговые элементы, а обучение сети происходит путем модификации синапсов. Ряд исследователей, правда, рассматривает нейрон как значительно более сложную систему обработки информации, предполагая, что основную роль в обучении играют молекулярные механизмы внутри нейрона. Все это указывает на необходимость максимально полного понимания работы биологических систем обработки информации и свойств организмов, обеспечиваемых этими системами. Одним из важных направлений исследований, способствующих такому пониманию, наверное, может быть анализ того, как в процессе биологической эволюции возникали «интеллектуальные» свойства биологических организмов.
Дата добавления: 2016-01-16; просмотров: 676;