Прогнозирование смертности
Наиболее разработанным в методическом отношении является прогнозирование смертности. Рассмотрим поэтому вкратце основные методические приемы прогнозирования уровней демографических процессов именно на примере смертности. Прогнозирование смертности может осуществляться двумя путями: первый из них предполагает, что сперва прогнозируется общий уровень смертности, измеренный в терминах средней продолжительности предстоящей жизни новорожденного, а затем производится оценка повозрастных уровней смертности для каждой принятой в прогнозе величины средней продолжительности предстоящей жизни новорожденного. Второй путь, напротив, предполагает обратный порядок прогнозирования общего и повозрастных уровней смертности: сперва определяются повозрастные показатели, а затем, на их основе, строится прогнозная величина средней продолжительности предстоящей жизни новорожденного.
В любом случае, однако, первый из этих этапов, в свою очередь, состоит из двух стадий: (1) определение величины средней продолжительности предстоящей жизни, или повозрастных значений смертности, на ту или иную дату в будущем и (2) определение тренда данной величины между базовым годом и годом, для которого делается расчет.
Вторая стадия является в основном чисто технической операцией, решаемой с помощью хорошо известных математических приемов интерполяции динамического ряда. Определение же будущего уровня смертности (величины средней продолжительности предстоящей жизни, или повозрастных значений смертности) носит более творческий характер и является настоящей научной задачей, решение которой требует проведения специального исследования.
Для определения прогнозных значений средней продолжительности предстоящей жизни, или повозрастных значений смертности, чаще всего применяются следующие методы: экстраполяция; метод «закона» смертности; референтное прогнозирование, или прогнозирование по аналогии (в трех разновидностях - (1) сравнение с типовыми таблицами смертности; (2) сравнение с более «продвинутым» населением и (3) сравнение с «оптимальной» таблицей смертности, рассчитанной для «идеальных» условий); прогнозирование, основанное на анализе динамики и прогнозе причин смертности20. Выбор конкретного метода зависит от целей прогнозирования, доступности и надежности демографической информации, а также, что немаловажно, от величины ресурсов, которыми располагает демограф-прогнозист.
Простейшим методом является экстраполяция. Если известны значения данного показателя для прошлых лет, то на относительно небольшой период времени будущий тренд можно определить с помощью методов экстраполяции, используя те или иные математические функции. Например, в случае прогнозирования средней продолжительности предстоящей жизни обычно используют логистическую кривую, поскольку она хорошо аппроксимирует динамику этого показателя.
При прогнозировании повозрастных уровней смертности (например, nqx - вероятности умереть на возрастном интервале (х + п) лет) с помощью тех или иных приемов определяют некий корректирующий коэффициент, показывающий зависимость выбранного параметра от времени, и умножают на него базовое значение прогнозируемого показателя для получения его величины на избранную дату. Затем, если необходимо, с помощью интерполяции получают его значения на промежуточные даты. Рассчитанные прогнозные значения смертности и средней ожидаемой продолжительности жизни обычным порядком используют для передвижки возрастов.
Второй метод прогнозирования повозрастной смертности основан на использовании т. н. «закона смертности», т. е. математической функции, которая описывает изменения уровня смертности в зависимости от возраста21. Хотя история «закона смертности» насчитывает уже почти три столетия, в современном виде он известен как модель Хелигмена-Полларда*, предложенная авторами в 1980 г. Модель описывает изменения уровня смертности, представленного отношением вероятности умереть в возрасте х лет из таблицы смертности к ее дополнению
* Л. Хелигмен (L. Heligman) - английский демограф; Дж. Поллард (J.H. Pollard) - австралийский демограф.
до 1, т. е. к вероятности дожить до следующего возраста х + 1 год (qx/1-qx). от возраста. Она представляет собой трехчлен, каждый их слагаемых которого описывает зависимость от возраста соответственно младенческой смертности, смертности в возрасте 15-40 лет и смертности в возрастах старше 40 лет.
Прогнозирование с помощью «закона смертности» состоит в определении его параметров (в модели Хелигмена-Полларда их девять), их последующей экстраполяции на глубину прогнозного горизонта и подстановке прогнозных значений параметров «закона смертности» в его формулу для получения величин повозрастных уровней смертности и как итог - средней продолжительности предстоящей жизни. Рассчитанные прогнозные значения смертности и средней ожидаемой продолжительности жизни, как и в предыдущем случае, используют для передвижки возрастов.
Метод прогнозирования смертности, основанный на использовании ее «закона», имеет ряд существенных ограничений, что создает немалые трудности для его практического использования. Более предпочтительными являются методы, о которых речь пойдет ниже, в частности метод референтного прогнозирования, или прогнозирования по аналогии.
Его первая разновидность - сравнение с типовыми таблицами смертности - может рассматриваться как частный случай одновременно и метода «закона смертности» и метода сравнения с более «продвинутым» населением. Техника прогнозирования в этом случае заключается в подборе наиболее подходящей, по мнению прогнозиста, системы типовых таблиц смертности*. Затем определяются параметры выбранной системы для ряда периодов в прошлом (обычно это средняя ожидаемая продолжительность жизни), после чего их экстраполируют для получения прогнозных значений. На следующем шаге, используя избранную систему типовых таблиц смертности, рассчитывают повозрастные уровни смертности, которые затем используются для передвижки возрастов. Наиболее часто этот метод применяется для прогнозирования смертности в наименее развитых странах, для которых характерны высокая смертность и низкая продолжительность жизни.
Для развитых стран более подходящей и обычно применяе-
* Дж. Поллард говорит даже о том, что в «это верят».
Мой разновидностью референтного прогнозирования является сравнение с более «продвинутыми» населениями, т. е. населениями, которые, как считается, «опережают в своем демографическом развитии»22 страну, для которой выполняется прогноз*.
Суть данного метода может быть кратко охарактеризована следующим образом. Прежде всего подбирается более «продвинутое» население с хорошей демографической статистикой за длительный период в прошлом. При этом есть основания надеяться, что история смертности более «продвинутого» населения «повторится» и для населения, для которого выполняется прогноз. Характеристики смертности последнего сравниваются с характеристиками более «продвинутого» населения. Выявленные сходства фиксируются. Например, может оказаться так, что прогнозируемое население с некоторым лагом (скажем, 20- 30 лет) повторяет население, более «продвинутое». Затем уровни смертности, которые были свойственны более «продвинутому» населению, используются как прогнозные ее значения прогнозируемого населения.
Применение метода сравнения с более «продвинутым» населением имеет ряд трудностей, главная из которых - выбор этого самого более «продвинутого» населения. Этот выбор является критическим для успеха прогнозирования смертности в данном случае.
Последней разновидностью референтного метода является сравнение с «оптимальной» таблицей смертности, соответствующей неким «идеальным» условиям, достижение которых возможно применительно к данному населению.
Метод основан на признании возможности существования некоей «оптимальной» таблицы смертности, описывающей этот демографический процесс применительно к гипотетическим «идеальным» условиям. Одним из первых поставили вопрос о такой возможности американские демографы П.К. Уэлптон, Х.Т. Элбридж и Дж.С. Зигель в своем прогнозе населения США, опубликованном в 1947 г.23 Сравнив данные по повозрастной смертности для разных штатов, они обнаружили, что показатели штатов с низкими уровнями смертности через определенный период времени повторяются на общенациональном уровне. Основываясь на этом наблюдении, П.К. Уэлптон, Х.Т. Элбридж
* Впрочем, он вполне годится и для развивающихся и для наименее развитых стран.
и Дж.С. Зигель предположили, что величину средней ожидаемой продолжительности предстоящей жизни в 68,4 года для мужчин и 71,8 года для женщин можно рассматривать (с учетом повышения уровня жизни и прогресса в области здравоохранения) как нижнюю границу для этого показателя в 2000 г.
Несколько позже (в 1952 г.) французский демограф Ж. Буржуа-Пиша задался вопросом о том, может ли смертность снижаться до 0 или существует некий предел этого снижения и, если да, то каков этот предел? В поисках ответа на этот вопрос он предложил разделить причины смерти на две категории - экзогенные (внешние, связанные с условиями жизни) и эндогенные (внутренние, связанные с естественными возрастными изменениями организма). Используя шесть расширенных группировок причин смерти и данные по Норвегии, Ж. Буржуа-Пища оценил предельную среднюю ожидаемую продолжительность предстоящей жизни в 76,3 и 78,2 для мужчин и женщин соответственно24.
Ближе к нашим дням английский демограф Б. Бенджамин выдвинул несколько «экстремальных гипотез» относительно возможного прогресса в структуре смертности по причинам. На их основе и используя данные о смертности для Англии и Уэльса, он оценил предельную среднюю ожидаемую продолжительность предстоящей жизни в 81,3 и 87,1 для мужчин и женщин соответственно25.
Прогнозирование, основанное на «оптимальной» таблице смертности, сводится к тому, что сперва подбирается подходящая таблица смертности, отражающая возможный прогресс в борьбе с каждой из групп причин смерти, описанных Б. Бенджамином. Затем принимается решение о том, каким образом прогнозируемое население достигнет оптимальной повозрастной смертности и как быстро это произойдет. После этого рассчитываются прогнозные значения смертности, которые используются для передвижки возрастов.
Последним из перечисленных выше методов прогнозирования является прогнозирование, основанное на анализе динамики и прогнозе причин смертности. Суть метода, предполагающего наличие хорошей статистики смертности по причинам, заключается в разложении повозрастных вероятностей умереть из таблицы смертности на частные вероятности умереть от отдельных причин смерти и последующем прогнозировании динамики последних (для каждой причины или класса причин по отдельности). Полученные прогнозные значения частных вероятностей смерти по причинам вновь интегрируются в суммарные вероятности смерти для каждого возраста, которые обычным порядком используются для передвижки возрастов26.
Завершая, хочется повторить еще раз, что выбор конкретного метода из описанных выше определяется как целями прогнозирования, так и доступной демостатистической информацией, а также располагаемыми ресурсами.
Дата добавления: 2016-01-09; просмотров: 687;