LIQUID-LIQUID EXTRACTION

Liquid–liquid extraction (LLE) consists in transferring one (or more) solute(s) contained in a feed solution to another immiscible liquid (solvent). The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called raffinate.

Liquid–liquid extraction also known as solvent extraction and partitioning, is a method to separate compounds based on their relative solubilities in two different immiscible liquids, usually water and an organic solvent. It is an extraction of a substance from one liquid into another liquid phase. Liquid–liquid extraction is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment. This type of process is commonly performed after a chemical reaction as part of the work-up.

The term partitioning is commonly used to refer to the underlying chemical and physical processes involved in liquid–liquid extraction, but on another reading may be fully synonymous with it. The term solvent extraction can also refer to the separation of a substance from a mixture by preferentially dissolving that substance in a suitable solvent. In that case, a soluble compound is separated from an insoluble compound or a complex matrix.

Solvent extraction is used in nuclear reprocessing, ore processing, the production of fine organic compounds, the processing of perfumes, the production of vegetable oils and biodiesel, and other industries.

Liquid–liquid extraction is possible in non-aqueous systems: In a system consisting of a molten metal in contact with molten salts, metals can be extracted from one phase to the other. This is related to a mercury electrode where a metal can be reduced, the metal will often then dissolve in the mercury to form an amalgam that modifies its electrochemistry greatly. For example, it is possible for sodium cations to be reduced at a mercury cathode to form sodium amalgam, while at an inert electrode (such as platinum) the sodium cations are not reduced. Instead, water is reduced to hydrogen. A detergent or fine solid can be used to stabilize an emulsion, or third phase.

Application in analytical chemistry. Often there are chemical species present or necessary at one stage of sample processing that will interfere with the analysis. For example, some air monitoring is performed by drawing air through a small glass tube filled with sorbent particles that have been coated with a chemical to stabilize or derivatize the analyte of interest. The coating may be of such a concentration or characteristics that it would damage the instrumentation or interfere with the analysis. If the sample can be extracted from the sorbent using a nonpolar solvent (such as toluene or carbon disulfide), and the coating is polar (such as HBr or phosphoric acid) the dissolved coating will partition into the aqueous phase. Clearly the reverse is true as well, using polar extraction solvent and a nonpolar solvent to partition a nonpolar interferent. A small aliquat of the organic phase (or in the latter case, (polar phase) can then be injected into the instrument for analysis.

 

 








Дата добавления: 2016-01-03; просмотров: 625; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2019 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.