Половое размножение
В основе половогоразмножения лежит половой процесс, который связан с образованием большого количества специализированных клеток — гамет (половых клеток) и их последующего слияния. Сливаясь, гаметы образуют зиготы. Это приводит к уменьшению числа исходных клеток. Из зигот развиваются новые организмы, объединяющие в себе наследственную информацию родительских форм. Половое размножение характерно для большинства живых организмов.
Для полого размножения характерны следующие особенности:
© в размножении принимает участие две особи — мужская и женская;
© осуществляется с помощью специализированных клеток — половых;
© в основе размножения лежит мейоз;
© потомки (за исключением однояйцевых близнецов) генетически отличны друг от друга и от родительских особей.
Как правило, яйцеклетки и сперматозоиды вырабатываются разными организмами. Такие организмы называются раздельнополыми. Если же один и тот же организм способен продуцировать и женские, и мужские гаметы, то его называют гермафродитом (ленточные черви, сосальщики). Но и в этом случае зигота образуется, чаще всего, в результате слияния гамет разных организмов (перекрестное оплодотворение).
Деление клеток
В основе передачи наследственной информации, размножения, развития, регенерации лежит деление клеток. Клетка как таковая существует только в промежутке между делениями.
Жизненный (клеточный цикл) |
Период существования клетки от момента ее образования путем деления материнской клетки (включая само деление) до собственного деления или смерти называют жизненным (клеточным) циклом (рис. 305).
В жизненном цикле клетки различают несколько фаз:
© Фаза деления. Соответствует митотическому делению.
© Фаза роста. Вслед за делением клетка начинает расти, увеличивая свой объем и достигая определенных размеров.
© Фаза покоя. Период, во время которого дальнейшая судьба клетки не определена: она может начать подготовку к делению или встать на путь специализации.
©
Рис. 305. Жизненный цикл клетки многоклеточного организма: 1 — митотический цикл; 2 — переход в дифференцированное состояние; 3 — гибель. |
© Фаза зрелости. Период функционирования клетки, выполнения тех или иных функций в зависимости от специализации.
© Фаза старения. Период, характеризующийся ослаб-
лением жизненных функций клетки и заканчивающийся ее делением или гибелью.
Продолжительность жизненного цикла и количество составляющих его фаз у клеток различны. Так, клетки нервной ткани после завершения эмбрионального периода перестают делиться и функционируют на протяжении всей жизни организма, а затем погибают. Клетки же зародыша на стадии дробления, завершив одно деление, сразу же приступают к следующему, минуя все остальные фазы.
Существует два способа деления клеток:
© митоз — непрямое деление;
© мейоз — деление, характерное для фазы созревания половых клеток.
Митоз |
Митоз[28] — непрямое деление соматических клеток, представляющее собой непрерывный процесс, в результате которого сначала происходит удвоение, а затем равномерное распределение наследственного материала между дочерними клетками.
Биологическое значение митоза:
© В результате митоза образуется две клетки, каждая из которых содержит столько же хромосом, сколько их было в материнской. Хромосомы дочерних клеток происходят от материнских хромосом путем точной репликации ДНК, поэтому их гены содержат совершенно одинаковую наследственную информацию. Дочерние клетки генетически идентичны родительской. Таким образом, митоз обеспечивает точную передачу наследственной информации от родительской клетки к дочерним.
© В результате митозов число клеток в организме увеличивается, что представляет собой один из главных механизмов роста.
© Многие виды растений и животных размножаются бесполым путем при помощи одного лишь митотического деления клеток, таким образом, митоз лежит в основе вегетативного размножения.
© Митоз обеспечивает регенерацию утраченных частей и замещение клеток, происходящее в той или иной степени у всех многоклеточных организмов.
Митотическое деление клетки находится под генетическим контролем. Митоз представляет собой центральное событие митотического цикла клетки.
Митотический цикл |
Митотический цикл — комплекс взаимосвязанных и детерминированных хронологически событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления.
Длительность митотического цикла у разных организмов сильно варьирует. Самые короткие митотические циклы характерны для дробящихся яиц некоторых животных (например, у золотой рыбки первые деления дробления совершаются через 20 минут). Наиболее распространены митотические циклы длительностью 18-20 ч. Встречаются циклы продолжительностью несколько суток. Даже в пределах одного организма наблюдаются различия в продолжительности митотического цикла: клетки эпителия двенадцатиперстной кишки мыши делятся каждые 11 часов, тощей кишки — 19 часов, в роговице глаза — через 3 суток.
Факторы, побуждающие клетку к митозу, точно не известны. Полагают, что основную роль играет соотношение объемов ядра и цитоплазмы (ядерно-цитоплазматическое соотношение). По некоторым данным, отмирающие клетки продуцируют вещества, способные стимулировать деление клетки. По двум главным событиям митотического цикла в нем выделяют:
© интерфазу;
© митотическое деление.
Новые клетки появляются в ходе двух последовательных процессов:
© митоза — непрямого деления, который приводит к удвоению ядра;
© цитокинеза — разделения цитоплазмы, при котором образуется две дочерних клетки, содержащих по одному дочернему ядру.
Непосредственно на деление клетки уходит обычно 1-3 часа, то есть основную часть жизни клетка находится в интерфазе.
Интерфаза [29] |
Интерфазой называют промежуток между двумя клеточными делениями. Продолжительность интерфазы, как правило, составляет до 90% всего клеточного цикла. Состоит из трех периодов:
© пресинтетический, или G1[30];
© синтетический, или S[31];
© постсинтетический, или G2.
Пресинтетический период |
Начальный отрезок интерфазы — пресинтетический период (2n2c), период роста, начинающийся непосредственно после митоза. Самый длинный период интерфазы, продолжительность которого в клетках составляет от 10 часов до нескольких суток. Непосредственно после деления восстанавливаются черты организации интерфазной клетки:
© завершается формирование ядрышка;
© в цитоплазме интенсивно идет синтез белка, что приводит к увеличению массы клетки;
© образуется запас предшественников ДНК, ферменты, катализирующие реакцию репликации, синтезируется белок, включающий эту реакцию.
Таким образом, в пресинтетический период осуществляются процессы подготовки следующего периода интерфазы — синтетического.
Синтетический период |
Продолжительность синтетического периода различна: от нескольких минут у бактерий до 6-12 часов в клетках млекопитающих.
Во время синтетического периода происходит самое главное событие интерфазы — удвоение молекул ДНК. Каждая хромосома становится двухроматидной, а число хромосом не изменяется (2n4c).
Параллельно с репликацией ДНК в цитоплазме интенсивно синтезируются гистоновые белки, которые затем мигрируют в ядро, где соединяются с ДНК.
Постсинтетический период |
Несмотря на то, что период называется постсинтетическим, это не означает отсутствие процессов синтеза на этом этапе интерфазы. Постсинтетическим его называют только потому, что он начинается после завершения синтеза (репликации) ДНК.
Если пресинтетический период осуществлял рост и подготовку к синтезу ДНК, то постсинтетический обеспечивает подготовку клетки к делению и также характеризуется интенсивными процессами синтеза. В этот период:
© продолжается синтез белков, входящих в состав хромосом;
© синтезируются ферменты и энергетические вещества, необходимые для обеспечения процесса деления клетки;
© начинается спирализация хромосом;
© синтезируются белки, необходимые для построения митотического аппарата клетки (митотического веретена);
© увеличивается масса цитоплазмы и резко возрастает объем ядра.
Механизм митоза |
Деление ядра и цитоплазмы — это два самостоятельных процесса, проходящие непрерывно и последовательно. Однако для удобства изучения происходящих во время деления событий митоз искусственно разделяют на четыре стадии (рис. 306):
© профазу;
© метафазу;
© анафазу;
© телофазу.
Длительность стадий митоза различна и зависит от типа ткани, физиологического состояния организма, внешних факторов. Наиболее продолжительны первая и последняя.
Профаза[32](2n4c) |
Первая фаза деления ядра. В начале профазы (ранняя профаза) ядро заметно увеличивается. В результате спирализации хромосомы уплотняются, укорачиваются. В поздней профазе хорошо видно, что каждая хромосома состоит из двух хроматид, соединенных центромерой. Хромосомы начинают передвигаться к клеточному экватору.
В поздней профазе из материала цитоплазмы формируется веретено деления. Оно образуется либо с участием центриолей (в клетках животных и некоторых низших растений), либо без них (в клетках высших растений и некоторых простейших). От центриолей, разошедшихся к разным полюсам клетки, начинают образовываться нити веретена деления двух типов:
© опорные, соединяющие полюса клетки;
© тянущие (хромосомные), прикрепляющиеся в метафазе к центромерам хромосом.
К концу профазы ядерная оболочка исчезает, и хромосомы свободно располагаются в цитоплазме. Ядрышко обычно исчезает чуть раньше.
Метафаза[33](2n4c) |
Началом метафазы считают тот момент, когда ядерная оболочка полностью исчезла. В начале метафазы хромосомы выстраиваются в плоскости экватора, образуя так называемую метафазную пластинку. Причем центромеры хромосом лежат строго в плоскости экватора. Нити веретена прикрепляются к центромерам хромосом, некоторые нити проходят от полюса к полюсу клетки, не прикрепляясь к хромосомам.
Рис. 306. Основные стадии митоза: А — профаза; Б — метафаза; В — анафаза; Г — телофаза. |
Анафаза[34](4n4c) |
Начинается с деления центромер всех хромосом, в результате чего хроматиды превращаются в две совершенно обособленные, самостоятельные дочерние хромосомы.
Затем дочерние хромосомы начинают расходиться к полюсам клетки. Во время движения к полюсам они обычно принимают V-образную форму. Расхождение хромосом к полюсам происходит за счет укорачивания нитей веретена. В это же время происходит удлинение опорных нитей веретена, в результате чего полюса еще дальше отодвигаются друг от друга.
Телофаза[35] (2n2c) |
В телофазе хромосомы концентрируются на полюсах клетки и деспирализуются. Веретено деления разрушается. Вокруг хромосом формируется оболочка ядер дочерних клеток. На этом завершается деление ядра (кариокинез), затем происходит деление цитоплазмы клетки (или цитокинез).
При делении животных клеток, на их поверхности в плоскости экватора появляется борозда, которая, постепенно углубляясь, разделяет материнскую клетку на две дочерние. У растений деление происходит путем образования так называемой клеточной пластинки, разделяющей цитоплазму. Она возникает в экваториальной области веретена, а затем растет во все стороны, достигая клеточной стенки (т.е. растет изнутри кнаружи). Клеточная пластинка формируется из материала, поставляемого эндоплазматической сетью. Затем каждая из дочерних клеток образует на своей стороне клеточную мембрану, и, наконец, на обеих сторонах пластинки образуются целлюлозные клеточные стенки.
Мейоз |
Мейоз — основной этап гаметогенеза, т.е. образования половых клеток. Образование гамет включает и митоз, и мейоз. Митоз обеспечивает накопление в половых железах большого количества незрелых клеток, которые впоследствии дают начало зрелым половым клеткам. Именно в результате мейоза происходит их созревание.
Во время мейоза происходит не одно (как при митозе), а два следующих друг за другом клеточных деления. Первому мейотическому делению предшествует интерфаза I — фаза подготовки клетки к делению, в это время происходят те же процессы, что и в интерфазе митоза.
Первое мейотическое деление называют редукционным, так как именно во время этого деления происходит уменьшение числа хромосом, то есть диплоидный набор хромосом становится гаплоидным, однако хромосомы остаются двухроматидными. Сразу же после первого деления мейоза совершается второе — обычный митоз. Это деление называют эквационным, так как во время этого деления хромосомы становятся однохроматидными.
Биологическое значение мейоза:
© Благодаря мейозу происходит редукция числа хромосом. Из одной диплоидной клетки образуется 4 гаплоидных.
© Благодаря мейозу образуются генетически различные клетки, как между собой, так и с исходной материнской клеткой. Генотипы этих клеток различны, т.к. в процессе мейоза происходит перекомбинация генетического материала за счет кроссинговера, случайного, независимого расхождения гомологичных хромосом, а затем и хроматид.
© Благодаря мейозу поддерживается постоянство диплоидного набора хромосом в соматических клетках. В процессе оплодотворения гаплоидные гаметы сливаются, образуя диплоидную зиготу. Зигота делится митозом, образуются соматические клетки с диплоидным набором хромосом.
I и II деление мейоза складываются из тех же фаз, что и митоз, но сущность изменений в наследственном аппарате другая (рис. 307).
Первое деление мейоза |
Профаза 1 (2n; 4с) |
Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий.
Лептотена (2n; 4с) |
Стадия тонких нитей. Хромосомы слабо конденсированы. Они уже двухроматидные, но настолько сближены, что имеют вид длинных одиночных тонких нитей. Теломеры хромосом прикреплены к ядерной мембране с помощью особых структур — прикрепительных дисков.
Зиготена (2n; 4с) |
Стадия сливающихся нитей. Гомологичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют. Конъюгацией называют процесс тесного сближения гомологичных хромосом. (Процесс конъюгации также называют синапсисом.)
Конъюгация может начинаться в разных точках хромосом (чаще всего с концов, иногда с центромер), а затем распространяться по всей длине. Полагают, что каждый ген приходит в соприкосновение с гомологичным ему геном другой хромосомы. Пару конъюгирующих хромосом называют бивалентом. Биваленты продолжают укорачиваться и утолщаться.
Интересен тот факт, что в зиготене гомологичные хромосомы, образуют биваленты, объединяются — четыре хроматиды удерживаются вместе, количество бивалентов равно гаплоидному набору хромосом.
Пахитена (2n; 4с) |
Стадия толстых нитей. Процесс спирализации хромосом продолжается, причем в гомологичных хромосомах он происходит синхронно. Становится хорошо заметно, что хромосомы двухроматидные. Таким образом, каждый бивалент образован четырьмя хроматидами. Поэтому его называют тетрадой. В пахитене наблюдается особенно тесный контакт между хроматидами.
Важнейшим событием пахитены является кроссинговер — обмен участками гомологичных хромосом, что приводит к образованию перекреста между несестринскими хроматидами бивалента. В пахитене перекресты еще не видны. Они проявляются позднее в виде хиазм. Кроссинговер приводит к первой во время мейоза рекомбинации генов.
Диплотена (2n; 4с) |
Стадия двойных нитей. Хромосомы в бивалентах перекручиваются и начинают отталкиваться друг от друга. Процесс отталкивания начинается в области центромеры и распространяется по всей длине бивалентов. Однако они все еще остаются связанными друг с другом в некоторых точках. Их называют хиазмы[36]. Эти точки появляются в местах кроссинговера. В ходе гаметогенеза у человека может образовываться до 50 хиазм.
Диакинез (2n; 4с) |
Хромосомы сильно укорачиваются и утолщаются за счет максимальной спирализации хроматид, а затем отделяются от ядерной оболочки. Происходит сползание хиазм к концам хроматид. Каждый бивалент содержит четыре хроматиды, которые удерживаются друг около друга благодаря наличию хиазм, переместившихся к их концам.
В конце профазы I исчезают ядерная оболочка и ядрышко. Биваленты перемещаются в экваториальную плоскость. Центриоли (если они есть) перемещаются к полюсам клетки, и формируется веретено деления.
Метафаза I (2n; 4с) |
Заканчивается формирование веретена деления. Спирализация хромосом максимальна. Биваленты располагаются в плоскости экватора. Причем центромеры гомологичных хромосом обращены к разным полюсам клетки. Расположение бивалентов в экваториальной плоскости равновероятное и случайное, то есть каждая из отцовских и материнских хромосом может быть повернута в сторону того или другого полюса. Это создает предпосылки для второй за время мейоза рекомбинации генов.
Центромеры хромосом прикрепляются к нитям веретена деления, но не делятся.
Анафаза I (2n; 4с) |
Нити веретена деления тянут центромеры, соединяющие две хроматиды к полюсам веретена деления. Таким образом, к полюсам расходятся целые хромосомы, а не хроматиды, как при митозе. У каждого полюса оказывается половина хромосомного набора. Причем, пары хромосом расходятся так, как они располагались в плоскости экватора во время метафазы. В результате возникают самые разнообразные сочетания отцовских и материнских хромосом (происходит перемешивание хромосом отца и матери), происходит вторая рекомбинация генетического материала.
Телофаза I (1n; 2с) |
У животных и некоторых растений хроматиды деспирализуются, вокруг них формируется ядерная оболочка. Затем происходит деление цитоплазмы (у животных) или образуется разделяющая клеточная стенка (у растений). У многих растений клетка из анафазы I сразу же переходит в профазу II.
Таким образом, в результате первого деления мейоза:
© произошла редукция (уменьшение) числа хромосом с диплоидного до гаплоидного;
© дважды произошла рекомбинация генов (за счет кроссинговера и случайного и независимого расхождения хромосом в анафазе).
Рис. 307. Основные стадии мейоза. |
Второе деление мейоза |
Интерфаза II (1n; 2с) |
Характерна только для животных клеток. Кратковременна, репликация ДНК не происходит.
Вторая стадия мейоза включает также профазу, метафазу, анафазу и телофазу. Она протекает так же, как обычный митоз.
Профаза II (1n; 2с) |
Хромосомы спирализуются, ядерная мембрана и ядрышки разрушаются, центриоли, если они есть, перемещаются к полюсам клетки, формируется веретено деления.
Метафаза II (1n; 2с) |
Формируются метафазная пластинка и веретено деления: хромосомы располагаются в плоскости экватора, нити веретена деления прикрепляются к центромерам, которые ведут себя как двойные структуры.
Анафаза II (2n; 2с) |
Центромеры хромосом делятся, хроматиды становятся самостоятельными хромосомами, и нити веретена деления растягивают их к полюсам клетки. Число хромосом в клетке становится диплоидным, но на каждом полюсе формируется гаплоидный набор. Поскольку в метафазе 2 хроматиды хромосом располагаются в плоскости экватора случайно по отношению к полюсам клетки, в анафазе происходит третья рекомбинация генетического материала.
Телофаза II (1n; 1с) |
Нити веретена деления исчезают, хромосомы деспирализуются, вокруг них восстанавливается ядерная оболочка, делится цитоплазма.
Таким образом, в результате двух последовательных делений мейоза диплоидная клетка дает начало четырем дочерним, генетически различным клеткам с гаплоидным набором хромосом.
38.4. Онтогенез,
или индивидуальное развитие организмов[37]
Онтогенез, или индивидуальное развитие — совокупность взаимосвязанных событий, закономерно совершающихся в процессе осуществления организмом жизненного цикла от момента образования зиготы до смерти. Изучение вопросов, связанных с индивидуальным развитием организмов, занимается эмбриология, основоположником которой считается академик Российской Академии К.М.Бэр. Основы учения об индивидуальном развитии организмов были изложены в его труде "История развития животных", опубликованном в 1828 г.
Индивидуальное развитие заключается в реализации организмом наследственной информации, полученной им от родителей.
Представители каждого вида организмов проходят определенные стадии развития от зиготы одного поколения до зиготы следующего. Такую последовательность стадий развития называют жизненным циклом. Жизненные циклы отличаются большим разнообразием, нередко связаны с чередованием поколений, различных типов размножения, с разными вариантами редукционного деления у растений, одноклеточных и многоклеточных животных, полиморфизмом особей.
Онтогенез — это непрерывный процесс развития особи, но для удобств изучения его делят на определенные периоды и стадии (у многоклеточных животных, размножающихся половым способом):
© эмбриональный — от образования зиготы до рождения или же выхода из яйцевых оболочек, который состоит из ряда стадий:
¨ одноклеточная (зигота);
¨ дробление;
¨ гаструляция;
¨ гисто- и органогенез;
© постэмбриональный — от выхода из яйцевых оболочек или рождения до смерти организма.
Гаметогенез |
Гаметогенез — это процесс развития половых клеток — гамет (рис. 308). Предшественники гамет (гаметоциты) образуются на ранних стадиях развития зародыша за пределами половых желез, а затем мигрируют в них. На стадии гаметоцитов клетки, как правило, неотличимы. Различия появляются лишь после их проникновения в половые железы. Гаметоциты диплоидны.
Этапы гаметогенеза |
Процесс образования сперматозоидов называется сперматогенезом, а образование яйцеклеток — оогенезом. В половых железах различают три разных участка (или зоны):
© зона размножения;
© зона роста;
© зона созревания половых клеток.
Сперматогенез и оогенез включают 3 одинаковые фазы:
© фаза размножения;
© фаза роста;
© фаза созревания (деления).
В сперматогенезе имеется еще одна фаза — фаза формирования.
Рис. 308. Основные этапы гаметогенеза. |
Фаза размножения |
Диплоидные клетки многократно делятся митозом. Количество клеток в гонадах растет. Их называют оогонии и сперматогонии. Набор хромосом 2n.
Фаза роста |
Сущность этой фазы — рост сперматогоний и оогоний, кроме того, в эту фазу происходит репликация ДНК, каждая хромосома становится двухроматидной (2n 4с). Образовавшиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка.
Фаза созревания |
Сущность фазы — мейоз. В первое мейотическое деление вступают гаметоциты 1-го порядка. В результате первого мейотического деления образуются гаметоциты 2-го порядка (набор хромосом n 2с), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (n c). Оогенез на этом этапе практически заканчивается, а сперматогенез включает еще одну фазу, во время которой сперматозоиды приобретают свою специфическую структуру.
В процессе гаметогенеза из диплоидных клеток образуются гаплоидные — гаметы. Происходит это благодаря мейозу. Таким образом, мейоз — основной этап формирования половых клеток.
Сперматогенез |
Во время периода размножения диплоидные сперматогенные клетки делятся митотически, в результате чего образуется множество более мелких клеток, называемых сперматогониями. Часть образовавшихся сперматогониев может подвергаться повторным митотическим делениям, в результате чего образуются такие же клетки сперматогонии. Другая часть — прекращает делиться и увеличивается в размерах, вступая в следующий период сперматогенеза — период роста. Увеличившиеся в размерах сперматогонии называются сперматоцитами 1-го порядка. Период созревания начинается тогда, когда сперматоцит 1-го порядка подвергается первому мейотическому делению, в результате чего образуются два сперматоцита 2-го порядка. Затем эти вновь образовавшиеся клетки делятся (второе мейотическое деление), и в результате образуются гаплоидные сперматиды. Таким образом, из одного сперматоцита 1-го порядка возникают четыре гаплоидных сперматиды. Период формирования сперматозоидов характеризуется тем, что первично шаровидные сперматиды подвергаются ряду сложных преобразований, в результате которых образуются сперматозоиды. Процесс превращения сперматид в сперматозоиды называется спермиогенезом. В нем участвуют все элементы ядра и цитоплазмы. Ядро сперматид уплотняется вследствие гиперспирализации хромосом, которые становятся генетически инертными. Аппарат Гольджи перемещается к одному из полюсов ядра и образует акросому. Центриоли занимают место у противоположного полюса ядра. Одна из них принимает участие в образовании жгутика. У основания жгутика в виде спирального чехла концентрируются митохондрии. Почти вся цитоплазма сперматиды отторгается.
Оогенез |
Все периоды развития яйцеклеток осуществляются у животных в яичниках. В отличие от образования сперматозоидов, которое происходит только после достижения половой зрелости (в частности, у позвоночных животных), процесс образования яйцеклеток начинается еще у зародыша. Период размножения полностью осуществляется на зародышевой стадии развития и заканчивается к моменту рождения (у млекопитающих и человека). Он характеризуется тем, что в результате простых мейотических делений первичных половых клеток (оогенных клеток) образуются оогонии, которые снова подвергаются митотическому делению. Дочерние клетки, возникшие в результате деления оогоний, называются ооцитами 1-го порядка. Их возникновение указывает на переход оогенеза в следующую фазу — период роста.
Ооциты увеличиваются в размерах и вступают в профазу I. Увеличение размеров ооцитов связано с тем, что в цитоплазме происходит накопление ряда питательных веществ (белков, жиров, углеводов) и пигментов — образуется желток. Затем ооциты 1-го порядка вступают в период созревания. В результате первого мейотического деления возникают две дочерние клетки. Одна из них, относительно мелкая, называемая первым полярным тельцем, не является функциональной, а другая, более крупная (ооцит 2-го порядка), подвергается дальнейшим преобразованиям.
Второе деление мейоза осуществляется до стадии метафазы II и продолжится только после того, как ооцит 2-го порядка вступит во взаимодействие со сперматозоидом, и произойдет оплодотворение. Таким образом, из яичника выходит, строго говоря, не яйцеклетка, а ооцит 2-го порядка. Лишь после оплодотворения он делится, в результате чего возникает яйцеклетка (или яйцо) и второе полярное тельце. Однако традиционно для удобства яйцеклеткой называют ооцит 2-го порядка, готовый к взаимодействию со сперматозоидом. Таким образом, в результате оогенеза образуется одна нормальная яйцеклетка и три полярных тельца.
Гаметы |
Гаметы — это половые клетки, при слиянии которых образуется зигота, дающая начало новому организму. Они представляют собой высокоспециализированные клетки, участвующие в осуществлении процессов, связанных с половым размножением. Гаметы имеют ряд особенностей, отличающих их от соматических клеток:
© хромосомный набор соматических клеток (у большинства организмов) — диплоидный (2n 2с), а гамет — гаплоидный (n с);
© гаметы не делятся;
© гаметы, особенно яйцеклетки, более крупные, чем соматические клетки;
© яйцеклетка содержит много питательных веществ, сперматозоид — мало (практически отсутствуют);
© гаметы имеют измененное ядерно-цитоплазматическое соотношение по сравнению с соматическими клетками (в яйцеклетке ядро занимает значительно больший объем, чем цитоплазма, в сперматозоиде — наоборот, причем ядро имеет такие же размеры, что и яйцеклетка).
Активная роль в оплодотворении принадлежит сперматозоиду. Как правило, он имеет малые размеры и подвижен (у животных). Яйцеклетка не только приносит в зиготу свой набор хромосом, но и обеспечивает ранние стадии развития зародыша. Поэтому она имеет крупные размеры и, как правило, содержит большой запас питательных веществ.
Организация яйцеклеток животных |
Яйцеклетка человека была открыта в 1821 году К.М.Бэром. Окончательное созревание яйцеклетки происходит уже после оплодотворения, поэтому фактически зрелой яйцеклетки не существует.
Размер яйцеклеток колеблется в широких пределах — от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека — около 100 мкм, яйцо страуса, имеющее длину со скорлупой порядка 155 мм — тоже яйцеклетка). Форма ее обычно округлая или слегка сплюснутая. Принципиальных различий в строении яйцеклетки и соматических клеток не существует: они имеют ядро, цитоплазму с органоидами и оболочку (рис. 309). Вместе с тем, яйцеклетка имеет ряд особенностей, отличающих ее от соматических клеток. К ним относятся:
© наличие ряда оболочек, располагающихся поверх плазматической мембраны;
© наличие в ее цитоплазме более или менее большого количества запасных питательных веществ.
Оболочки |
У большинства животных яйцеклетки имеют дополнительные оболочки, располагающиеся поверх цитоплазматической мембраны. В зависимости от происхождения различают:
©
Рис. 309. Яйцеклетка млекопитающих: 1 — пронуклеус на стадии метафазы 2; 2 — блестящая оболочка; 3 — лучистая оболочка; 4 — первое полярное тельце. |
© Вторичные оболочки, образованные выделениями фолликулярных клеток яичника. Имеются не у всех яиц. Вторичная оболочка яиц многих насекомых, например, содержит канал — микропиле, через который сперматозоид проникает в яйцеклетку.
© Третичные оболочки, образующиеся за счет деятельности специальных желез яйцеводов. Например, у птиц происходит образование белковой, подскорлуповой пергаментной, скорлуповой и надскорлуповой оболочек.
Вторичные и третичные оболочки, как правило, образуются у яйцеклеток животных, зародыши которых развиваются во внешней среде. Их строение соответствует условиям среды.
Поскольку у млекопитающих наблюдается внутриутробное развитие, их яйцеклетки имеют только первичную оболочку, поверх которой располагается лучистый венец — слой фолликулярных клеток, доставляющих к яйцеклетке питательные вещества.
Питательные вещества яйцеклетки |
В яйцеклетках происходит накопление запаса питательных веществ, которые называют желтком. Он содержит белки, жиры, углеводы, РНК, минеральные вещества, причем основную его массу составляют липопротеиды и гликопротеиды. Желток содержится в цитоплазме обычно в виде желточных гранул. Количество питательных веществ, накапливаемых в яйцеклетке, зависит от условий, в которых происходит развитие зародыша. Так, если развитие яйцеклетки происходит вне организма матери и приводит к формированию крупных животных, то желток может составлять бо-
Рис 310. Типы яйцеклеток хордовых животных: 1 — алецитальная; 2 — изолецитальная; 3 — умеренно телолецитальная; 4 — резко телолецитальная. |
В зависимости от количества желтка, содержащегося в яйцеклетках, различают (рис. 310):
© алецитальные яйца — яйца, не содержащие желтка или имеющие незначительное количество желточных включе-
ний (млекопитающие, плоские черви);
© изолецитальные яйца — яйца с равномерно распределенным желтком (ланцетник, морской еж);
© умеренно телолецитальные яйца — яйца с неравномерным распределением желтка (рыбы, земноводные);
© резко телолецитальные яйца — яйца, в которых желток занимает большую часть, и лишь небольшой участок цитоплазмы на анимальном полюсе свободен от него (птицы).
В связи с накоплением питательных веществ, у яйцеклеток появляется полярность. Противоположные полюсы называются вегетативным и анимальным. Поляризация у разных животных выражена неодинаково и зависит от количества и распределения желтка.
Поляризация проявляется в том, что происходит изменение местоположения ядра в клетке (оно смещается в сторону анимального полюса), а также в особенностях распределения цитоплазматических включений (во многих яйцах количества желтка возрастает от анимального к вегетативному полюсу).
Организация сперматозоидов |
Сперматозоид открыт в 1617 году учеником Гука. Он обеспечивает встречу с яйцеклеткой, приносит в нее свою часть генетической информации, стимулирует развитие зиготы. Длина сперматозоида человека 50-60 мкм. Функции сперматозоида определяют и его строение. Сперматозоид млекопитающих имеет форму длинной нити (рис. 311).
Головка |
Самая крупная часть сперматозоида, образованная ядром, сильно уплотненным в результате гиперспирализации хромосом. Ядро окружено тонким слоем цитоплазмы. На переднем конце головки расположена акросома — часть цитоплазмы с видоизмененным аппаратом
Рис. 311. Строение сперматозоида: 1 — головка; 2 — шейка; 3 — средняя часть; 4 — (жгутик); 5 — акросома; 6 — ядро; 7 — центриоли; 8 —митохондрии. |
Шейка |
В месте перехода головки в среднюю часть образуется перехват — шейка сперматозоида, в которой расположены две центриоли.
Средняя часть |
За шейкой располагается средняя часть сперматозоида, представляющая собой скопление митохондрий.
Хвост |
Хвост имеет типичное для всех жгутиков эукариот строение и является органоидом движения сперматозоида. Энергию для движения поставляет гидролиз АТФ, происходящий в митохондриях средней части сперматозоида.
Оплодотворение |
Оплодотворение — совокупность процессов, приводящих к слиянию мужских и женских гамет (сингамия), объединению их ядер (кариогамия) и образованию зиготы, которая дает начало новому организму.
В процессе оплодотворения происходит:
© активация яйцеклетки;
© восстановление диплоидного набора хромосом;
© определение пола будущего организма;
© объединение наследственных свойств родительских организмов и возникновение у потомков новых комбинаций наследственных факторов.
Осеменение |
Как правило, оплодотворению предшествует осеменение. Под осеменением понимают сближение гамет.
Различают два типа осеменения:
© наружное, при котором встреча сперматозоидов и яйцеклеток происходит во внешней (чаще всего водной) среде (рыбы);
© внутреннее, при котором встреча сперматозоидов и яйцеклеток происходит в половых путях самки (пресмыкающиеся, птицы, млекопитающие).
Проникновение спермия в яйцо |
Собственно процесс оплодотворения начинается в момент контакта сперматозоида и яйцеклетки. Он начинается с так называемой акросомальной реакции. В момент контакта сперматозоида и яйцеклетки плазматическая мембрана акросомального выроста и прилежащая к ней часть мембраны акросомального пузырька растворяюся, фермент гиалуронидаза и другие биологически активные вещества, содержащиеся в акросоме, выделяются наружу и растворяют участок яйцевой оболочки. Чаще всего сперматозоид полностью втягивается в яйцо, иногда жгутик остается снаружи и отбрасывается. С момента проникновения сперматозоида в яйцо гаметы перестают существовать, так как образуют единую клетку — зиготу.
Слияние генетического материала спермия и яйца |
Ядро сперматозоида набухает, его хроматин разрыхляется, ядерная оболочка растворяется, и он превращается в мужской пронуклеус. Это происходит одновременно с завершением второго деления мейоза ядра яйцеклетки, которое возобновилось благодаря оплодотворению. Постепенно ядро яйцеклетки превращается в женский пронуклеус. Пронуклеусы перемещаются к центру яйцеклетки, происходит репликация ДНК, и после их слияния набор хромосом и ДНК зиготы становится 2n4c. Объединение пронуклеусов и представляет собой собственно оплодотворение. Таким образом, оплодотворение заканчивается образованием зиготы с диплоидным ядром.
Оплодотворение — необратимый процесс, то есть однажды оплодотворенное яйцо не может быть оплодотворено вновь. В зависимости от количества сперматозоидов, проникающих в яйцеклетку при оплодотворении, различают:
© моноспермию — оплодотворение, при котором в яйцо проникает только один сперматозоид (наиболее обычное оплодотворение);
© полиспермию — оплодотворение, при котором в яйцеклетку проникает несколько сперматозоидов (некоторые птицы, рептилии). Но даже в этом случае с ядром яйцеклетки сливается ядро только одного из сперматозоидов, а остальные ядра разрушаются.
В зависимости от количества особей, принимающих участие в половом размножении, различают:
© перекрестное оплодотворение — оплодотворение, в котором принимают участие гаметы, образованные разными организмами;
© самооплодотворение — оплодотворение, при котором сливаются гаметы, образованные одним и тем же организмом (некоторые растения, паразитические черви).
Партеногенез |
В некоторых группах организмов половое размножение происходит при участии гамет, но без оплодотворения. Партеногенез (девственное размножение) — это развитие организма из неоплодотворенного яйца. Партеногенез известен у всех типов беспозвоночных животных и у всех позвоночных, кроме млекопитающих, у которых партеногенетические зародыши погибают на ранних стадиях эмбриогенеза. Он может быть:
© Искусственным, вызывается человеком путем активизации яйцеклетки в результате воздействия на нее различными веществами, механическим раздражением, повышением температуры и т.д.
© Естественным, если яйцо начинает дробиться и развивается в эмбрион без участия сперматозоида, только под влиянием внутренних или внешних причин. Причем различают:
¨ соматический, или диплоидный, если мейоз не происходит, и развитие начинается с диплоидных ооцитов, или если мейоз произошел, но сливаются два гаплоидных ядра, восстанавливая диплоидный набор хромосом (тли, дафнии, одуванчики);
¨ генеративный, или гаплоидный, если зародыш начинает развиваться из гаплоидной яйцеклетки (трутни пчел). Как правило, возникающие при этом организмы гаплоидны.
Если развитие яйцеклетки происходит без участия ядра сперматозоида (некоторые рыбы, круглые черви), то такая разновидность партеногенеза называется гиногенезом. Однако именно сперматозоид стимулирует начало дробления яйцеклетки, хотя и не оплодотворяет ее.
Если развитие яйца происходит только за счет генетического материала сперматозоидов и цитоплазмы яйцеклетки, то в этом случае говорят об андрогенезе. Этот тип развития может осуществляться в том случае, если ядро яйцеклетки погибает еще до оплодотворения, а в яйцеклетку попадает не один, а несколько сперматозоидов (тутовый шелкопряд).
Дата добавления: 2016-01-03; просмотров: 1694;