Биосинтез белков, код ДНК, транскрипция
В каждой клетке синтезируется несколько тысяч различных белковых молекул. Белки недолговечны, время их существования ограничено, после чего они разрушаются. Способность синтезировать строго определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов в ДНК.
В геноме человека менее 100 000 генов, которые находятся в 23 хромосомах. Одна хромосома содержит несколько тысяч генов, которые располагаются в линейном порядке в определенных участках хромосомы — локусах.
Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомальных РНК.
Итак, последовательность нуклеотидов каким-то образом кодирует последовательность аминокислот. Все многообразие белков образовано из 20 различных аминокислот, а нуклеотидов в составе ДНК — 4 вида. Если предположить, что один нуклеотид кодирует одну аминокислоту, то 4 нуклеотидами можно закодировать 4 аминокислоты, если 2 нуклеотида кодируют одну аминокислоту, то количество кодируемых кислот возрастает до 42 — 16. Значит, код ДНК должен быть триплетным. Было доказано, что именно три нуклеотида кодируют одну аминокислоту, в этом случае можно будет закодировать 43 — 64 аминокислоты. А так как аминокислот всего 20, то некоторые аминокислоты должны кодироваться несколькими триплетами.
В настоящее время известны следующие свойства генетического кода:
1. Триплетность: каждая аминокислота кодируется триплетом нуклеотидов.
2. Однозначность: кодовый триплет, кодон, соответствует только одной аминокислоте.
3. Вырожденность (избыточность): одну аминокислоту могут кодировать несколько (до шести) кодонов.
4. Универсальность: генетический код одинаков, одинаковые аминокислоты кодируются одними и теми же триплетами нуклеотидов у всех организмов Земли.
5. Неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов. (Жил был кот тих был сер мил мне тот кот);
6. Из 64 кодовых триплетов 61 кодон — кодирующие, кодируют аминокислоты, а 3 — бессмысленные, не кодируют аминокислоты, терминирующие синтез полипептида при работе рибосомы (УАА, УГА, УАГ). Кроме того, есть кодон — инициатор (метиониновый), с которого начинается синтез любого полипептида.
Таблица 7.
Генетический код
Первое Основание | Второе основание | Третье основание | |||
У(А) | Ц(Г) | А(Т) | Г(Ц) | ||
У(А) | Фен Фен Лей Лей | Сер Сер Сер Сер | Тир Тир – – | Цис Цис – Три | У(А) Ц(Г) А(Т) Г(Ц) |
Ц(Г) | Лей Лей Лей Лей | Про Про Про Про | Гис Гис Глн Глн | Арг Арг Арг Арг | У(А) Ц(Г) А(Т) Г(Ц) |
А(Т) | Иле Иле Иле Мет | Тре Тре Тре Тре | Асн Асн Лиз Лиз | Сер Сер Арг Арг | У(А) Ц(Г) А(Т) Г(Ц) |
Г(Ц) | Вал Вал Вал Вал | Ала Ала Ала Ала | Асп Асп Глу Глу | Гли Гли Гли Гли | У(А) Ц(Г) А(Т) Г(Ц) |
Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.
В начале 50 гг. Ф. Крик сформулировал центральную догму молекулярной биологии:
ДНК®РНК®белок.
Информация о белке находится на ДНК, на матрице ДНК синтезируется иРНК, которая является матрицей для синтеза белковой молекулы. Матричный синтез позволяет очень точно и быстро синтезировать макромолекулы полимеров, состоящие из огромного количества мономеров. С реакциями матричного синтеза мы встречались при удвоении молекулы ДНК, синтез иРНК (транскрипция) и синтез молекулы белка на иРНК (трансляция) — также реакции матричного синтеза.
Транскрипция. В соответствии с принятыми соглашениями, начало гена на схемах изображают слева (рис. 292). У некодирующей цепи молекулы ДНК левый конец 5', правый 3'; у кодирующей, матричной, с которой идет транскрипция — противоположное направление. Фермент, отвечающий за синтез иРНК, РНК-полимераза, присоединяется к промотору, который находится на 3'-конце матричной цепи ДНК и движется всегда от 3' к 5' концу. Промотор — определенная последовательность нуклеотидов, к которой может присоединиться фермент РНК-полимераза. Необходим для того, чтобы синтез иРНК был начат строго в начале гена. Из свободных рибонуклеозидтрифосфатов (АТФ, УТФ, ГТФ, ЦТФ), комплементарных нуклеотидам ДНК, РНК-полимераза образует иРНК.
Рис. 292. Транскрипция, схема образования иРНК на матрице ДНК. |
Энергия для синтеза иРНК содержится в макроэргических связях рибонуклеозидтрифосфатов. Период полураспада мРНК исчисляется часами и даже сутками, т.е. они стабильны.
Транскрипция и трансляция разобщены в пространстве и во времени, транскрипция протекает в ядре и в одно время, трансляция происходит в цитоплазме и совсем в другое время. Для транскрипции необходимы: 1 — кодирующая цепь ДНК, матрица; 2 — ферменты, один из них РНК-полимераза; 3 — рибонуклеозидтрифосфаты.
Трансляция
Трансляция — процесс образования полипептидной цепи на матрице иРНК, или преобразование информации, закодированной в виде последовательности нуклеотидов иРНК, в последовательность аминокислот в полипептиде. Синтез белковых молекул происходит в цитоплазме или на шероховатой эндоплазматической сети. В цитоплазме синтезируются белки для собственных нужд клетки, белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки.
Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК. В клетке их более 30 видов, длина тРНК от 76 до 85 нуклеотидных остатков, они имеют третичную структуру за счет спаривания комплементарных нуклеотидов и по форме напоминают лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. На верхушке антикодоновой петли каждая тРНК имеет антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3'-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединить именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.
Двадцать видов аминокислот кодируются 61 кодовым триплетом, теоретически может иметься 61 вид тРНК с соответствующими антикодонами, то есть у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне не всегда важен). Обнаружено всего более 30 различных тРНК (рис. 293).
Рис. 293. Аланиновые тРНК, чьи антикодоны комплементарны кодовым триплетам ГЦУ, ГЦЦ, ГЦА, ГЦГ. |
Органоиды, отвечающие за синтез белков в клетке — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70-S рибосомы) и в цитоплазме: в свободном виде и на мембранах эндоплазматической сети (80-S рибосомы). Малая субчастица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.
В малой субъединице рибосомы различают функциональный центр (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три в пептидильном и три в аминоацильном участках.
Рис. 294. Инициация трансляции. |
Затем происходит присоединение большой субчастицы рибосомы и в А-участок поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.
Пептидилтрансферазный центр большой субчастицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ (рис. 295).
Рис. 295. Этапы трансляции. |
Как только образовалась пептидная связь, метиониновая тРНК отсоединяется от метионина, а рибосома передвигается на следующий кодовый триплет иРНК, который оказывается в А-участке рибосомы, а метиониновая тРНК выталкивается в цитоплазму. На один цикл расходуется 2 молекулы ГТФ. Затем все повторяется, образуется пептидная связь между второй и третьей аминокислотами.
Трансляция идет до тех пор, пока в А-участок не попадает стоп-кодон (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения, белковая цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субчастиц рибосомы.
Многие белки синтезируются в виде предшественников, содержащих ЛП — лидерную последовательность (15 — 25 аминокислотных остатков на N-конце, «паспорт белка»). ЛП определяют места назначения белков, "направление" белка (в ядро, в митохондрию, в пластиды, в комплекс Гольджи). Затем протеолитические ферменты отщепляют ЛП.
Скорость передвижения рибосомы по иРНК — 5–6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут. Первым белком, синтезированным искусственно, был инсулин, состоящий из 51 аминокислотного остатка. Потребовалось провести 5000 операций, в работе принимали участие 10 человек в течение трех лет.
Таким образом, для трансляции необходимы: 1 — иРНК, кодирующая последовательность аминокислот в полипептиде; 2 — рибосомы, декодирующие иРНК и образующие полипептид; 3 — тРНК, транспортирующие аминокислоты в рибосомы; 4 — энергия в форме АТФ и ГТФ для присоединения аминокислот к рибосоме и для работы рибосомы; 5 — аминокислоты, строительный материал; 6 — ферменты (аминоацил-тРНК-синтетазы и др.).
Дата добавления: 2016-01-03; просмотров: 1214;