Дифференциальный усилитель. В настоящее время входные цепи операционных усилителей в подавляющем большинстве выполняются по схеме дифференциальных усилителей
В настоящее время входные цепи операционных усилителей в подавляющем большинстве выполняются по схеме дифференциальных усилителей. По принципу построения это балансные (мостовые) усилительные каскады параллельного типа. Они обладают высокой стабильностью параметров при воздействии различных дестабилизирующих факторов, большим коэффициентом усиления дифференциальных сигналов и высокой степенью подавления синфазных помех. Дифференциальный усилитель – это широко известная схема, используемая для усиления разности двух напряжений. В идеальном случае выходной сигнал не зависит от уровня каждого из сигналов, а определяется только их разностью. Когда уровни сигналов на обоих входах изменяются одинаково, то такое изменение сигнала называют синфазным. Дифференциальный или разностный сигнал называют еще полезным. Хороший дифференциальный усилитель обладает высоким коэффициентом ослабления (подавления) синфазного сигнала (КОСС), который представляет собой отношение выходного полезного сигнала к выходному синфазному сигналу.
Дифференциальные усилители используют в тех случаях, когда слабые сигналы можно потерять на фоне шумов. Примерами таких сигналов являются цифровые сигналы, передаваемые по длинным линиям (кабель обычно состоит из двух скрученных проводов), звуковые сигналы, напряжения кардиограмм. Дифференциальные усилители используются для построения входных каскадов операционных усилителей, которые являются базой современной аналоговой схемотехники.
Дифференциальный каскад состоит из двух каскадов, у которых используется общий эмиттерный резистор (рис.11.15, а). Элементы схемы образуют мост (рис.11.15, б), в одну диагональ которого включен источник питания UПИТ, в другую – сопротивление нагрузки RН. Условие баланса моста, при котором его выходное напряжение равно нулю, определяется как
RVT1 RK2 = RVT2 RK2. (11.17)
Нарушение этого условия приводит к разбалансировке моста и появлению выходного напряжения. Такой разбаланс может произойти, например, при изменении выходных сопротивлений транзисторов RVT1и RVT2, которые, в свою очередь, зависят от входных напряжений UВХ1 и UВХ2.
Рис.11.15. Дифференциальный усилительный каскад (а) и его схема замещения (б)
Если элементы схемы будут полностью идентичны, выходное напряжение при воздействии любых дестабилизирующих факторов, например, температуры, напряжения источника питания, приведут к одинаковым изменениям токов обоих транзисторов. В результате абсолютное значение выходного напряжения не изменится.
На вход схемы подаются сигналы, один из которых – дифференциальный необходимо усиливать, другой – синфазный необходимо подавлять. Синфазный сигнал вызывает одинаковое изменение состояния транзисторов, следовательно, выходное напряжение при идентичности параметров плеч не будет изменяться, что обеспечивает подавление синфазной помехи. Дифференциальный сигнал вызывает приоткрывание одного из транзисторов и подзапирание второго, тем самым, вызывая появление напряжения на выходе схемы. В этом случае напряжения на входах имеют противоположные знаки. Поэтому приращения как коллекторного, так и эмиттерного токов также имеют противоположные знаки. Изменения коллекторных потенциалов обоих транзисторов, вызванные противоположными по знаку приращениями коллекторных токов, протекающих через соответствующие резисторы, приводит к появлению выходного напряжения
ΔUВЫХ = ΔIK1 RK1 – (-ΔIK2 RK2) = RK (ΔIK1 + ΔIK2). (11.18)
На общем эмиттерном резисторе изменение эмиттерных токов даст соответственно приращение
ΔUЭ = RЭ (ΔIЭ1 – ΔIЭ2). (11.19)
Если параметры обеих половин дифференциального усилителя одинаковы, то ΔUЭ = 0.
Напряжение ΔUЭ отражает действие в каскаде, выполненном по схеме с ОЭ, последовательной ООС по току нагрузки. Отсутствие этого напряжения говорит о том, что в полностью симметричном дифференциальном каскаде, как по постоянному, так и по переменному току действие ООС отсутствует.
На основании сказанного можно сделать следующий вывод. Коэффициент усиления по напряжению дифференциального усилителя всегда больше, чем в каскаде на одиночном транзисторе.
Сопротивление RЭ определяет коэффициент усиления дифференциального сигнала, чем меньше RЭ, тем больше коэффициент. С другой стороны, чем больше RЭ, тем меньше изменяются коллекторные токи транзисторов при воздействии возмущений (например, синфазных сигналов), тем больше КОСС.
Для устранения этого противоречия в цепь эмиттера включают генератор стабильного тока на транзисторе (рис.11.16). Эта схема при небольшом статическом сопротивлении обладает большим дифференциальным сопротивлением, т.е. при небольшом падении напряжения имеет большое внутреннее сопротивление для переменных составляющих.
Идеальный генератор постоянного тока обладал бы бесконечным сопротивлением. Транзистор по своим свойствам приближается к идеальному генератору тока, поскольку его выходное сопротивление приближается к 100 кОм.
Применение диода VD в нижнем плече делителя напряжения обеспечивает температурную компенсацию. Прямое напряжения на диоде падает с ростом температуры точно так же, как это имеет место с разностью напряжений между базой и эмиттером, так что в широком диапазоне температур приложенное к базе напряжение согласуется с тем, какое требуется транзистору для поддержания постоянного тока эмиттера. В интегральных микросхемах роль диода может играть точно такой же открытый переход база – эмиттер (транзистор с замкнутым накоротко коллектором и базой), что приводит к идеальному отслеживанию температурных изменений, такую схему называют токовым зеркалом.
Рис.11.16. Дифференциальный усилитель с генератором тока в эмиттерной цепи
Когда в эмиттерной цепи дифференциального усилителя включен генератор стабильного тока, можно дать простое качественное объяснение работы усилителя в целом. Входные сигналы не могут изменить суммарный ток в эмиттерной и коллекторной цепи, они могут только по-разному распределять его между транзисторами. Следовательно, синфазный сигнал не меняет коллекторных токов, и выходной сигнал не возникает. Сигнал на выходе появляется только в том случае, когда входные напряжения различны, при этом в один из транзисторов будет отводиться большая доля суммарного тока эмиттеров, чем в другой. Например, если увеличивается входное напряжение первого транзистора, увеличивается его коллекторный ток, уменьшается – у второго транзистора, соответственно уменьшается напряжение коллектора первого транзистора и увеличивается – у второго транзистора, выходное напряжение равно разности этих двух напряжений.
В реальном усилителе из-за неизбежной асимметрии схемы происходит лишь частичная компенсация изменений выходного напряжения, вызванного действием внешних дестабилизирующих факторов.
Недостатком рассмотренных схем усилителей постоянного тока является дрейф нуля – самопроизвольное изменение выходного напряжения. В первую очередь оно обусловлено несимметрией схемы. Все рассмотренные схемотехнические приемы направлены на улучшение параметров схемы.
Для устранения дрейфа нуля используются усилители постоянного тока с преобразованием. В усилителях рассматриваемого типа входной постоянный или медленно меняющийся сигнал преобразуется (модулируется) в переменный сигнал повышенной частоты. Полученный сигнал усиливается с помощью усилителя переменного напряжения, а затем вновь преобразуется (демодулируется) в постоянный или медленно меняющийся сигнал. Частота переменного напряжения часто составляет десятки килогерц.
Вследствие того, что в таких усилителях отсутствуют гальванические связи между каскадами, удается достичь высокого качества усиления, так как дрейф нуля в данной схеме отсутствует. Такие усилители могут использоваться в прецизионных устройствах. Еще одним достоинством усилителей постоянного тока с преобразованием является возможность изолировать входную и выходную части.
К недостаткам таких усилителей относятся малый частотный диапазон и наличие импульсных помех от модуляторов, присутствующих в выходном сигнале.
Дата добавления: 2015-12-29; просмотров: 1018;